메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

조중근 (성균관대학교, Sungkyunkwan university)

지도교수
Jae-Do Nam
발행연도
2018
저작권
성균관대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
We could achieve high thermal conductivity and excellent thermal distortion resistance samples incorporation the hybrid fillers of incorporating aluminum nitride (AlN) and boron nitride (BN) in ethylene-propylene-diene monomer (EPDM) rubber. In the hybrid filler system, the planar-shaped BN filler with high aspect ratio were located in the interstitial space of EPDM, resulting in a high thermal conductivity (4.75 W/mK), low CTE (39.9 ppm/°C) and low thermal distortion parameters (TDP, 8.4 m/K), which could not be achieved by either AlN or BN in single filler composite. Simultaneously, the AlN/BN hybrid EPDM composites provided high stiffness and excellent damping properties due to the unique packing morphology of the different shapes of fillers. It exhibits excellent damping coefficient (tan δ at 0.5) due to the high friction energy caused by shear stress of hybrid filler and polymer, exhibiting 16.6 times higher damping coefficient than the neat EDPM composite (0.03). The bimodal distribution of polygonal AlN and planar BN particles in the hybrid filler system proved that the two different particles fill the interstitial space and maximize the contact area between the particles, which greatly affects the thermal and dynamic properties of the composite material. The developed hybrid filler EPDM composite may ensure extended lifetime and durability in utilization due to the enhanced thermal energy dissipation.

목차

Abstract 1
Chapter 1: Introduction 3
1.1. Object of this study 3
1.2. Background 7
1.2.1 Ethylene-propylene-diene monomer rubber (EPDM) 7
1.2.2 Aluminum nitride and boron nitride 9
1.2.3 Thermal Conductive Mechanisms in Polymers 11
1.2.4 Laser flash method for thermal conductivity measurement 13
1.2.5 Chemical treatment of fillers 16
1.2.6 Heat generation in rubber 18
Chapter 2: Experimental 19
2.1. Materials 19
2.2. Surface modification of ceramic fillers 19
2.3. Preparation of ceramic/EPDM composites 20
2.4. Characterization 21
Chapter 3: Results and discussion 23
3.1. Analysis of surface modification of ceramic fillers 23
3.2. Morphology of ceramic/EDPM composites 27
3.3. Thermal properties of ceramic/EPDM composites 29
3.4. Dynamic mechanical analysis of ceramic/EPDM composites 36
Chapter 4: Conclusions 41
Reference 42

최근 본 자료

전체보기

댓글(0)

0