메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이두기 (전북대학교, 전북대학교 일반대학원)

지도교수
김만영
발행연도
2018
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
As phase change processes play an important role in the metallurgical and thermal manufacturing industries, the ability to predict its phenomena is considerable engineering interest. The term of phase change (or phase transition) means the transformation from one thermodynamic state to another, such as the transitions between solid, liquid, and gaseous states of matter. During a solid-liquid phase transition of matter, it has different thermodynamic properties along with the thermal behavior of matter due to the absorption and release of latent heat. Also, these processes involve complex heat and mass transfer phenomena and occur as an intermediate state, i.e. mushy region, where the material can be mixed liquid and solid. Usually a solid-liquid phase interface and its front motion are irregular in shape in that process. Therefore, it needs a mathematical description on a fixed grid method in order to attack and predict the phase change characteristics.
Meanwhile, the UWS(Urea-Water Solution) used as a reducing agent in the Urea-SCR(Selective Catalytic Reduction) system is an eutectic mixture, which has a concentration of 32.5wt%. Therefore, the UWS of the liquid phase has the same composition as that of the original solid phase and it has a freezing point of ?11°C lower than any mixture of the components. Owing to the fact, the UWS is frozen in cold environment where the ambient temperature drops below the freezing point. In case of low ambient temperature levels, thus, the urea tank module must be separately heated to ensure a quantity of the liquid UWS during cold start conditions to reduce the initial NOx emissions from exhausted gases. For this reason, it is necessary to adopt a heating apparatus for thawing the frozen UWS in the cold start conditions.
In this study, therefore, numerical analysis was conducted to investigate the thawing process including a complex solid-liquid phase change with electric heating module in urea tank by using the commercial CFD software Fluent 17.0. After introducing the numerical methodologies related to melting, the validation work was conducted by analyzing the phase front motion in literature and comparing with an experimental test of the UWS thawing. In order to check whether the number of grids is in proper range, the grid convergence test was also performed.
The results show that the melting and thermal characteristics, such as a heat transfer of conduction and convection, phase transition, phase interface motion, and natural convection etc., in the thawing process of the frozen UWS with model 2 and 3 of the heating module. It can be found that conduction, convection and combined heat transfer can be classified according to the thawing step, and the average velocity of the phase interface motion is faster in the upper region than in the lower region. Also, the natural convection becomes more actively as time goes on in the domain. When comparing the thawing performance according to the shape of the electric heating module, it is concluded that not only the heat transfer area but also the volume of the heating module is an important factor affecting its performance.

목차

제 1 장 서론 1
1.1 연구 배경 및 필요성 1
1.2 문헌 연구 8
1.3 연구 목적 및 내용 12
제 2 장 Urea-SCR 시스템 14
2.1 NOx 유해성 14
2.2 NOx 생성 메커니즘 17
2.3 Urea-SCR 19
2.4 Urea-SCR 반응 메커니즘 23
2.5 요소수 공급 모듈 26
제 3 장 수치 해석 27
3.1 지배 방정식 27
3.2 수치 해석 모델 및 경계 조건 31
3.2.1 전기 가열 모듈 및 해석 모델 31
3.2.2 수치 해석 경계 조건 34
제 4 장 수치 해석 모델 검증 37
4.1 순수 갈륨 융해 과정 - 상 경계면 결과 비교 37
4.2 요소수 해동 실험 해동량 결과 비교 40
4.3 격자 수렴성 테스트 44
제 5 장 수치 해석 결과 45
5.1 동결 요소수의 열전달 특성 45
5.1.1 전기 가열 모듈의 온도 분포 45
5.1.2 요소수 내부의 온도 분포 50
5.2 동결 요소수의 해동 특성 54
5.2.1 요소수 해동에 따른 상 변화 및 상 경계면 이동 54
5.2.2 액상 요소수의 자연 대류 현상 64
5.3 전기 가열 모듈에 따른 해동 특성 분석 67
5.3.1 형상에 따른 해동 성능 비교 67
5.3.2 발열량에 따른 해동 특성 분석 71
5.4 요소수 공급 모듈 구성품 장착 위치 선정 74
제 6 장 결론 77
참고 문헌 79

최근 본 자료

전체보기

댓글(0)

0