메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

최태혁 (한양대학교, 한양대학교 대학원)

지도교수
이태희
발행연도
2018
저작권
한양대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
해석모델을 통하여 제품의 성능을 평가하고 이를 기반으로 설계가 진행됨에 따라 해석모델 기반 설계 결과의 신뢰성 및 강건성을 높이기 위해서 해석모델의 높은 예측 정확도가 요구된다. 하지만 실제 시스템에 존재하는 불확실성으로 인해 실제 모델과 유사한 해석모델을 구축하기는 쉽지 않다. 따라서 해석모델의 예측 정확도를 향상시키기 위해 불확실성을 고려한 통계적 모델 보정(statistical model calibration) 기법이 연구되고 있으며, 실제 모델과 해석모델의 유사도를 정확하게 정량화하는 보정 척도가 개발되어야 한다. 하지만 아직 통계적 모델 보정을 위한 일반화된 보정 척도는 뚜렷하게 정해지지 않았다.
본 연구에서는 이중 응답 시스템에서 더욱 높은 예측 정확도를 확보할 수 있는 해석모델을 구축하기 위해 이중 응답들의 특성과 응답 사이의 상관성을 정량화하고 이중 응답을 한 번에 비교함으로써 보정 파라미터의 이중 응답에 미치는 영향을 함께 고려할 수 있는 통계적 모델 보정 기법을 개발한다. 실제 실험과 전산실험으로부터 얻은 이중 응답으로 아카이케 정보척도(Akaike information criterion)를 이용하여 응답의 특성을 나타내는 부분분포함수와 응답 사이의 상관성을 표현하는 코플라를 추정하여 각 모델의 응답에 대한 결합누적분포함수를 생성한다. 또한 두 개의 결합누적분포함수의 차이를 계산하여 해석모델과 실제 모델의 유사도를 정량화할 수 있는 결합누적분포함수 부피 척도(joint cumulative distribution function volume metric)를 제안한다. 새로운 통계적 모델 보정 척도의 정확성을 수학 예제를 통해 검증하고, 이중 응답인 고유진동수와 출력 전압을 발생시키는 압전 에너지 하베스터에 적용하여 유용성을 확인한다.

목차

목 차 iv
List of Tables vi
List of Figures vii
국문요지 ix
제 1 장 서론 1
1.1 연구배경 1
1.2 문헌조사 3
1.3 연구목적 5
1.4 연구내용 및 범위 6
제 2 장 통계적 모델링 7
2.1 우량함수 7
2.2 아카이케 정보척도 8
2.3 아카이케 정보척도를 이용한 결합밀도함수 추정 9
2.3.1 코플라의 정의 10
2.3.2 코플라의 분류 11
2.3.3 코플라의 추정 13
제 3 장 통계적 모델 보정 척도 15
3.1 문헌조사 15
3.2 결합누적분포함수 부피 척도 16
3.3 통계적 모델 보정 19
제 4 장 수학 예제 21
제 5 장 공학 예제 28
4.1 압전 에너지 하베스터 28
4.2 압전 에너지 하베스터의 통계적 모델 보정 29
4.3 결과 고찰 36
제 6 장 결 론 37
REFERENCES 38
감사의 글 43

최근 본 자료

전체보기

댓글(0)

0