메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

손로 (대구가톨릭대학교, 대구가톨릭대학교 대학원)

지도교수
김봉환
발행연도
2018
저작권
대구가톨릭대학교 논문은 저작권에 의해 보호받습니다.

이용수27

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
A water strider is a small aquatic insect that is common in lakes, ponds and wetlands, about 8 to 20 mm long. The water strider has bristles smaller than 3 microns on each leg. In the bristle, there are grooves that form helical nano-structure on the surface. The air in the grooves forms the air cushion. It prevents the fluid from entering into and allows it to walk freely on the water without wetting its legs. Such structure of the water strider has many advantages like having less resistance, high stability, high mobility at waking on the water, and high floating ability on the water.
The purpose of this study is to develop a bio-mimic water strider robot that is small in volume, light in weight and reacts quickly on the surface using the super hydrophobic property of its leg. In order to achieve this purpose, we designed the artificial leg structures with hydrophobicity and fabricated the legs and bodies by using 3D printing, which is getting popular nowadays. To add super hydrophobic properties to fabricated legs, super hydrophobic coating was applied.
The results of this study are summarized as follows.
1) Based on knowledge about the super hydrophobic structure of legs of the water strider, we designed 3 kinds of leg structures like wire leg with a plastic round disc foot, wire leg with specified angle at bottom, PLA leg thru 3D printing. From the experiment of bearing capacity against water, we found that the PLA structure using 3D printing has the highest bearing capacity.
2) Three kinds of leg structures using with 3D printing such as Cylindrical leg, rectangular leg, and thorny leg structure were designed and fabricated. The results of comparing the bearing capacity about 3 kinds show that the thorny leg structure has highest bearing capacity, and it was confirmed that the larger the surface area can make the higher bearing capacity.
3) In the comparison of length of legs made with 3D printing, 85mm showed the highest bearing capacity, In the comparative experiments with the filling density, it was found that the legs made with 30% filler density had the greatest bearing capacity.
4) It has been confirmed that the super hydrophobic coating on the thorny leg structure has more than double of the bearing capacity.
5) We have analyzed the driving method of the water strider, and found out that the motor drive method using two wings is a useful method thru the several experiments
The water strider robots designed and fabricated in this study moves fast and stably on the water with high bearing capacity. Therefore, we are confident that our robot structure can be used for some applications like detecting humidity and harmful gases in the wet areas, because some sensors can be equipped.
However, there is a problem that the power supply must be supplied by wire and the wireless control method which can be moved in various directions is applied. So, I think it is necessary to further research on ways to improve the utilization of the robots.

목차

Ⅰ. 서 론 1
Ⅱ. 이론적 배경 2
2-1. 곤충 소금쟁이 2
2-2. 소금쟁이 다리의 표면 구조 2
2-3. 소금쟁이의 물에 떠있는 형태 및 물 젓는 방식 3
2-4. 물의 표면 장력 및 소금쟁이 다리 지지력 분석 5
2-5. 초소수성 재료 8
Ⅲ. 초소수성 다리 설계 및 지지력 실험 11
3-1. 다리 재료의 선정 11
3-2. 원형의 바닥을 가진 다리 제작 및 지지력 실험 12
3-3. 철사를 이용한 일자형태의 다리 제작 및 지지력 실험 12
3-4. 여러 받침다리 형태별 지지력 비교실험 16
3-5. 가시형태 받침다리의 가시 개수별 지지력 비교실험 20
3-6. 3D 프린팅을 이용한 다리 및 몸체 제작 23
3-7. 3D 프린팅으로 제작한 다리의 길이별 지지력 비교실험 28
3-7-1. 다리 길이별 지지력 실험 결과 분석 28
3-7-2. 충전물 밀도별 지지력 실험 결과 분석 31
Ⅳ. 생체 모방 소금쟁이 로봇제작 35
4-1. 물 젓는 방식 35
4-2. 소금쟁이 로봇 구동다리 구조분석 및 설계 36
4-3. 소금쟁이 로봇의 구동날개 운동 분석 38
4-4. 3D 프린팅을 이용한 소금쟁이 로봇의 제작 40
V. 소금쟁이 로봇의 구동 및 제어 41
5-1. 부품의 선택 41
5-2. Bootloader 설치 방법 43
5-3. 전기 공급 방식 설계 45
5-4. 소금쟁이 로봇의 직선운동속도 변경 실험 46
Ⅵ. 결 론 50
참 고 문 헌 52

최근 본 자료

전체보기

댓글(0)

0