메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김남기 (경일대학교, 경일대학교 대학원)

지도교수
정석봉
발행연도
2017
저작권
경일대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
A Study on Customized Brand Recommendation based on Customer Behavior for Off-line Shopping Malls*



Kim, Nam-ki

Department of Business Administration
Graduate School, Kyungil University

Supervised by Professor Jeong, Seok-Bong

(Abstract)

With the rapid growth of the Internet over the recent years, there has been a demand for online shopping malls. There are several contributing factors and one of them being able to apply business analytics to online shopping mall. Business analytics allow collection and analysis of data to model consumer shopping behavior, such as preferences, price range, product style, date of purchase, the quantity of purchase. Online shopping mall, therefore, have more adequate conditions for analytics businesses than offline one, and brand-recommend system is a key part of the conditions.
Recently, Amazon, Netflix, Facebook and domestic shopping malls tend to adopt the recommendation system, whereas the offline shopping malls have relatively inferior systems than those malls as for rapid interactions with customers.
This study is about a recommendation system which can be applied to marketing activities in offline shopping mall. It proposes a real-time brand recommendation system using collaborative filtering, which is widely applied for various companies.
The recommendation system is a business model which recommends products that are closely related to customers'' preference. Considering environments of the offline shopping malls, this study is focused on recommendation system about brands which purchased and visited by customers, by using collaborative filtering.
The process of the proposed model, which applies collaborative filtering to offline shopping mall can be separated into two categories; training and apply process. The training process is designed to make the base brand network(BBN) by using historical transaction data. In the apply process, real-time brand recommendation system is set up and is based on behaviors of customers who have bought products on that day.
By finding Precision, Recall and F1 measure, this study evaluates the efficiency of the recommendation system. Brand transaction history from mid-sized department store in South Korea will be used for comparative evaluation.
This study, related to brand recommendation system for offline shopping mall, points out as in the following.
First, brand recommendation system based on customers'' shopping behavior can be effectively applied to offline shopping malls, as so in online one.
Second, a guideline about various parameters for customized brand recommendation system is suggested.

목차

목 차
국문초록 ⅰ
목 차 ⅲ
표 목 차 ⅴ
그림목차 ⅵ
Ⅰ. 서 론 1
1. 연구의 배경 및 목적 1
2. 연구의 방법 및 범위 4
Ⅱ. 이론적 배경 및 선행연구 검토 6
1. 추천 시스템 6
1) 내용 기반 필터링 8
2) 규칙기반 필터링 11
3) 하이브리드 필터링 13
2. 협업 필터링 14
1) 협업 필터링의 분류 18
2) 협업 필터링의 알고리즘 25
3) 협업 필터링의 문제점 32
3. 오프라인 쇼핑몰에서 위치추적 환경 35
Ⅲ. 오프라인 쇼핑몰에서 브랜드 추천 기법 40
1. 학습과정 44
2. 적용과정 47
Ⅳ. 실험 및 평가 51
1. 실험 데이터 51
2. 분석 방법 55
3. 실험 결과 56
Ⅴ. 결론 및 시사점 61
1. 연구 요약 및 시사점 61
2. 연구의 한계 및 연구방향 63
참고문헌 65
Abstract 79

최근 본 자료

전체보기

댓글(0)

0