메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

박건 (충북대학교, 충북대학교 대학원)

지도교수
홍기남
발행연도
2018
저작권
충북대학교 논문은 저작권에 의해 보호받습니다.

이용수5

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Rainfall in Korea is characterized by concentration of rainfall in summer, so a considerable number of water storage facilities (dams, weirs, reservoirs, etc.) have been constructed. In addition, due to the fact that the population is concentrated in large cities, the number of water and wastewater treatment facilities has been increasing, and the gradually growing demand on natural gas, a clean fuel, also is increasing the number of Liquefied Natural Gas(LNG) storage facilities. Moreover, there is a growing concern that Korea is no longer safe for earthquakes because an earthquake has occurred recently in Gyeongju. Therefore, it is necessary to pay attention to the safety of these various fluid storage structures against earthquakes.
When a seismic load is applied to the fluid storage structure, hydrostatic pressure generated by the interaction of the structure and the internal fluid in addition to the inertial force additionally acts on the structure. However, there is a practical limit to proceed with precise dynamic analysis taking into account fluid-structure interaction effects in the design stage. Currently, domestic and international design criteria for seismic design of fluid storage structures mostly use the concentrated mass model by Houser or additional mass model by Westergaard. However, the concentrated mass model proposed by Housner has the problem that the aspect ratio (h/B) of the fluid storage structure can not be considered. The additional mass model proposed by Westergaard also differs from the actual hydrostatic pressure because the structure is assumed to be a rigid body.
An additional mass function that can estimate the effect of hydrostatic pressure acting on a structure by the additional mass method is proposed in this study. Shaking table experiments and structural analysis for model tanks were conducted for this purpose. The shaking table test for model tanks was conducted in an acrylic tank filled with 25% and 40% water. The vibration test of this acrylic model tank was reproduced by FEM analysis using SPH technique. The sloshing profile of the free surface of the model water tank was compared to evaluate the accuracy of the FEM analysis. In particular, the comparison of the shape of the free surface at the time of maximum slushing showed that the FEM analysis using the SPH technique predicts the slushing behavior of the fluid very accurately. In order to evaluate the effect of different seismic waves on the sloshing characteristics and free water surface shape of the fluid, FEM analysis was carried out by applying 5 artificial earthquakes covering the design response spectrum to the tank. Also, the effect of the ratio of the structure width to the fluid height on the slushing characteristics and the free water surface shape was analytically evaluated. Finally, structural analysis for water tank was carried out by applying Housner’s model, Westergaard’s model, and additional mass model using additional mass function obtained from this analytical study. The validity of the proposed additional mass model was verified by analyzing the analysis results.

목차

Ⅰ. 서 론 1
1.1 연구 목적 및 필요성 1
1.2 국내외 연구동향 3
1.3 연구동향 분석 및 연구방향 5
1.4 연구방법 및 범위 7
Ⅱ. 이론적 고찰 12
2.1 설계응답스펙트럼 포괄 인공지진파 수정 이론 12
2.1.1 개요 12
2.1.2 인공지진파 수정 이론 12
2.2 유체 구조물 상호작용 해석 이론 16
2.2.1 개요 16
2.2.2 SPH(Smoothed Particle Hydrodynamic)기법의 기본이론 16
Ⅲ. 설계응답스펙트럼 포괄 인공지진파 생성 30
3.1 개요 30
3.2 설계응답스펙트럼 작성 기준 및 주기 간격 30
3.2.1 설계응답스펙트럼 작성 31
3.2.2 응답스펙트럼 계산 주기 간격 33
3.3 설계기준 고찰 34
3.4 인공지진파 수정방법 제안 41
3.4.1 인공지진파 수정 41
3.4.2 수정 함수 42
3.4.3 수정 절차 45
3.4.4 제안 방법에 의한 인공지진파 수정 48
3.4.5 수정 인공지진파의 검증 56
Ⅳ. 모형 수조 진동 실험 및 검증 해석 64
4.1 개요 64
4.2 모형 수조 진동실험 64
4.2.1 진동대 64
4.2.2 모형수조의 제원 66
4.2.3 모형수조 진동 실험 결과 70
4.3 유체 구조물 상호작용 실험 및 검증 해석 73
Ⅴ. 부가질량 산정법 제안 78
5.1 개요 78
5.2 지진파의 형상에 따른 자유수면의 유동 특성 78
5.2.1 해석 적용 인공지진파 78
5.2.2 지진파의 형상에 따른 자유수면 유동 특성 85
5.3 유체 높이와 구조물 폭 비에 따른 자유수면 유동 특성 93
5.3.1 적용 지진파 93
5.3.2 자유수면 유동 특성 95
5.4 동수압 산정법 제안 106
5.4.1 동수압 계산법 비교 106
5.4.2 동수압 및 부재력 비교 113
Ⅵ. 결 론 138
참고문헌 141

최근 본 자료

전체보기

댓글(0)

0