메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김동주 (충북대학교, 충북대학교 대학원)

지도교수
맹승진
발행연도
2017
저작권
충북대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Although large hydraulic facilities such as sea dike, breakwater bank and river bank, can protect a lot of lives and various industrial facilities from flood. The extreme weather events including changes in land use, localized heavy rains, extraordinary floods and earthquakes; rapid water discharge from upstream dams; and dam destruction may cause inundation damage like flood flow and debris flow. Such disasters by outburst floods result in not only loss of mass lives and property but also different social problems. In this regard, it is essential to establish flood forecasting, warning and evacuation strategy for proper flood measures against such disasters.
Organizations in charge of controlling reservoirs and sea dikes have developed and operated Emergency Action Plan (EAP) by scenarios of emergency situations caused by floods exceeding the design flood amount or unpredictable reasons such as earthquakes.EAP classifies emergency levels issued for emergency situations including collapse of reservoirs and sea dikes into 4 stages-Attention (Blue), Caution (Yellow), Alert (Orange), Serious (Red) - to determine and respond to the symptom by situation.
For areas where EAP for sea dikes has been established, the development of emergency situations or countermeasures are classified, while there is no index to separate them. In this case, if a manager conducts the phased measures with only “forecasting” in the situation stage, they are highly likely to have limitations to their active responses.
This research aims to perform hydraulic and hydrologic safety review on sea dikes according to inflow of extraordinary floods from upstream of sea dikes and tributaries. Changes in water level flowing into the lake according to flood amount by frequency is used to investigate if it can be utilized as a disaster management index for EAP for sea dikes. For this, EAP index is developed by simulating flood level changes and time to reach flood level at the point of selected sea dikes from 100, 200 and 500-year and PMF flood amounts centering around the sea dikes. Targeting Saemangeum Lake, the study set the range required for numerical model, entered model composition and data using Delft3D numerical analysis model, verified the credibility of the model through calibration and established operational conditions of the model.
Assuming that Saemangeum Master Plan had been completed, the study also conducted comprehensive operations. For inflow of floods by each frequency according to management water level in the lake, time to reach the flood level and flood stage were simulated.
EAP index was established using the flood level and travel time. If the initial stage among the emergency levels, ‘Attention,’ was set as 『from extraordinary flood to management water level EL-1.5m』, it would be beneficial to respond to initial disasters. Also, it would be easier to set ‘Caution’ as 『from management water level EL-1.5m to management flood level inside the lake EL+1.5m』; ‘Alert’ as 『from management flood level inside the lake EL+1.5m to riprap protection flood level inside the bank』; and ‘Serious’ as 『flood level over riprap protection inside the bank (Mangyeong EL+4.5m, Dongjin EL+2.5m)』 for responding to initial disasters.
The research aims to provide sea dike operators with more accurate information by presenting index by emergency situation stage. The result, as hydraulic and hydrological data on flood level, travel time, etc., is expected to be useful for sea dikes with or without EAP as a response index required for disaster management of sea dikes.

목차

Ⅰ. 서론 1
Ⅱ. 연구사 5
2.1 홍수위 분석 12
2.2 재난관리 16
Ⅲ. 모형의 이론 20
3.1 HEC-RAS 모형 20
3.2 Delft3D 모형 31
Ⅳ. 대상유역 선정 및 연구방법 44
4.1 대상유역 선정 및 특성 44
4.1.1 유역의 선정 44
4.1.2 유역의 특성 46
4.2 연구방법 61
Ⅴ. 모형의 구축 62
5.1 해석영역 62
5.1.1 해석범위 선정 62
5.1.2 계산영역 및 계산격자 생성 62
5.1.3 지형자료 입력 64
5.1.4 Dry point 구성 66
5.1.5 주요 관측지점 선정 66
5.2 경계조건 68
5.2.1 상류단 본류 유입량 68
5.2.2 상류단 소유역 유입량 73
5.2.3 하류단 조석조건 79
5.2.4 조도계수 및 기타 매개변수 79
Ⅵ. 결과 및 고찰 82
6.1 모형의 검보정 82
6.1.1 배수갑문 및 조위보정 82
6.1.2 배수갑문 및 조위검정 88
6.2 모형의 운영조건 91
6.2.1 모형의 운영방법 91
6.2.2 조석조건 설정 91
6.2.3 초기조건 설정 94
6.2.4 갑문 운영 및 홍수량 조건 설정 94
6.3 모형분석 결과 96
6.3.1 최대홍수위 모의 결과 96
6.3.2 빈도별 최대홍수위 모의 결과 97
6.3.3 기존 모형분석 결과와의 비교 105
6.4 새만금 비상대처계획 모의 107
6.4.1 새만금 비상대처계획 수립목적 및 필요성 107
6.4.2 새만금 비상대처계획 관련규정 108
6.4.3 새만금 비상상황의 분류 108
6.4.4 새만금 시설물 검토 110
6.5 새만금 비상상황 시나리오 작성 115
6.6 재난지표 제안 및 활용방안 115
6.7 가상 시나리오에 의한 재난지표의 적용 117
Ⅶ. 결론 121
참고문헌 123
Appendix 128

최근 본 자료

전체보기

댓글(0)

0