메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김상민 (충남대학교, 忠南大學校 大學院)

지도교수
김용하
발행연도
2017
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수4

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The empirical/statistical models to estimate the ground Particulate Matter(PM) concentration from Moderate-Resolution Imaging Spectroradiometer Aerosol Optical Depth (AOD) product were analyzed for the period of 2011-2015 in Seoul, South Korea.
In the model construction of AOD and PM, two vertical correction methods using planetary boundary layer height (PBLH) and vertical weighting/fraction factor and humidity correction from hygroscopic growth factor of aerosol were applied to the respective models. For the training period of 2013~2014, two linear regression models of AOD-PM10, respectively, using PBLH and vertical weighting/fraction factor showed similar performance; the correlation coefficients between AOD and PM10 were 0.64 and 0.66, respectively. In the multiple linear regression model using all predictors, the correlation coefficient between the observed PM10 and the estimated PM10 was 0.72, showing a similar or better performance compared with the results of previous studies. In the seasonal analysis, the lowest correlation of 0.62 was found in spring season when Asian dust frequently occur, whereas the highest correlation of 0.96 was shown in winter season with low PBLH and stable atmospheric condition. On the other hand, the multiple linear regression models to estimate PM10 and PM2.5 from MODIS AOD were constructed in the same way.
In 2015, the empirical model of PM2.5 showed a better performance than PM10 model; the correlation coefficients were 0.69 and 0.74, respectively. The estimated PM10 tended to be underestimated for PM10 observation and this pattern was clear from February to April in 2015 when severe dust events were observed. Also, the estimated PM2.5 showed somewhat underestimation in comparison with PM2.5 observation and this tendency was obvious in winter season. These results imply that the application of predictor in the model construction to derive PM10 and PM2.5 from satellite AOD can be different and anthropogenic factors such as fossil-fuel combustion, automobiles, and population density play significant roles in the PM2.5 model.

목차

목 차
LIST OF TABLES iii
LIST OF FIGURES iv
제 1 장 서론 01
제 2 장 자료 및 방법 04
2.1 AOD와 지표면 PM측정자료 04
2.2 기상자료 07
2.3 방법 08
제 3 장 경험적 모델 구성 및 분석 20
3.1 수직보정방법 적용 25
3.2 행성 경계층 고도자료를 사용한 보정방법으로 구성된 PM추정을 위한 경험적 선형 모델 27
3.3 Lidar 후방 산란계수의 수직 가중 비율을 사용한 보정방법으로 구성된 PM추정을 위한 경험적 선형 모델 31
제 4 장 다중 선형 회귀 모델 구성 및 검증 35
4.1 다중 선형 회귀 모델 구성 35
4.2 모델 검증 39
4.3 미세먼지 및 초미세먼지 추정을 위한 다중 선형 회귀 모델 구성 및 검증 41
제 5 장 요약 및 결론 44
참고문헌 46
Abstract 50

최근 본 자료

전체보기

댓글(0)

0