메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김영균 (안동대학교, 안동대학교 대학원)

지도교수
이기안
발행연도
2017
저작권
안동대학교 논문은 저작권에 의해 보호받습니다.

이용수32

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
This study investigated microstructure and high temperature mechanical properties of Metals(pure metal, alloy) manufactured by 3D printing process. In the present study, we applied selective laser melting technique using laser source and kinetic metallization technique using spray source to 3D printing process
First, we investigated the effect of heat-treatment on the microstructure changes and high temperature properties of Ti-6Al-4V manufactured by selective laser melting process. Initial microstructure observation revealed that prior-β grains were elongated along the building direction and had fully martensite structure. Meanwhile, some martensite phases were decomposed to a’, a and β by heat treatment(stress relieving condition). A compression test results confirmed that room temperature yield strength of as-fabricated and heat-treated materials measured 1365 MPa and 1138 MPa, respectively. At higher temperatures, as-fabricated materials showed good mechanical properties than heat-treated materials to about 500°C. Meanwhile, there is no differences between the two materials after 700°C, which was attributed to microstructure evolution at high temperatures. The average charpy impact energy measured as 6.0 J before heat treatment, and after heat treatment, the average impact energy increased by approximately 20% to 7.3 J. Such an increase in impact energy is the result of complex factors including the formation of β phases, decrease of dislocation density, and residual stress relief according to heat treatment. After the formation of widmanstatten structure using only heat treatment, we compared the high temperature creep properties with as-fabricated materials consisting of martensite structure. As a result, the materials with widmanstatten structure showed relatively good creep resistance than as-fabricated materials in all the stress ranges.
With this we investigated the microstructure and high temperature properties of high melting point refractory metals(Nb, Ta) manufactured by kinetic metallization process. Initial microstructural observation confirmed that odd-shaped powder elongated in a direction vertical to the spraying direction. In addition, microstructural evolution was confirmed in the process of accepting severe plastic deformation along the powder interface area. A compression test confirmed that room temperature yield strength measured as 660 MPa in Nb, and 901 MPa in Ta bulk materials. This value is four to six times greater than materials produced using conventional processes such as P/M and E-Beam melting. The material also featured outstanding strength compared to materials formed through the severe plastic deformation process. Also these high strength characteristics were maintained even at high temperature. The reason is that rapidly increasing dislocation density in the process of severe plastic deformation of each powder.

목차

1.서론 1
2. 이론적 배경 5
2.1 3D 프린팅 타겟 금속 소재 5
2.1.1 Ti-6Al-4V 합금 5
2.1.2 Pure Tantalum 6
2.1.2 Pure Niobium 6
2.2 Laser를 이용한 금속 3D 프린팅 공정 7
2.2.1 Powder Bed Fusion 방식 7
2.2.2 Direct Energy Deposition 방식 9
2.3 Spray를 이용한 금속 3D 프린팅 공정 11
2.3.1 Kinetic metallization Process 11
3. 실험 방법 13
3.1 3D 프린팅 공정을 이용한 금속 소재의 제조 13
3.1.1 Selective Laser Melting 공정을 이용한 Ti-6Al-4V 합금 제조 13
3.1.2 Kinetic Metallization 공정을 이용한 pure Nb, Ta bulk재 제조 15
3.2 미세조직 관찰 및 분석 19
3.2.1상 분석 및 미세조직 관찰 19
3.3 고온 특성 평가 20
3.3.1 상온 및 고온 압축 실험 20
3.3.2 상온 충격 실험 20
3.3.3 고온 압축 크립 실험 20
3.3.4 변형 조직, 파단면 분석 21
4. 연구 결과 및 고찰 23
4.1 Selective Laser Melting 공정으로 제조된 Ti-6Al-4V 합금의 미세조직 및 고온 기계적 특성 23
4.1.1 상온 및 고온 압축 변형 거동에 미치는 열처리의 영향 23
4.1.2 샤르피 충격 특성에 미치는 열처리의 영향 44
4.1.3 고온 크립 특성 개선 연구 50
4.2 Kinetic Metallization 공정으로 제조된 pure Nb bulk 소재의 미세조직 및 고온 기계적 특성 63
4.2.1 Kinetic metallized Nb 소재의 미세조직 분석 63
4.2.2 Kinetic metallized Nb 소재의 상온 및 고온 압축 특성 71
4.2.3 Kinetic metallized Nb 소재의 변형 거동 분석 76
4.3 Kinetic Metallization 공정으로 제조된 pure Ta bulk 소재의 미세조직 및 고온 기계적 특성 82
4.3.1 Kinetic metallized Ta 소재의 미세조직 분석 82
4.3.2 Kinetic metallized Ta 소재의 상온 및 고온 압축 특성 87
4.3.3 Kinetic metallized Ta 소재의 변형 거동 분석 90
5. 결 론 96
참고문헌 98

최근 본 자료

전체보기

댓글(0)

0