메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김성훈 (부산대학교, 부산대학교 대학원)

지도교수
김영수
발행연도
2016
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수7

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Recently, industry has been evolved along with the rapid economic growth, and environmental problems have emerged as a major issue all over the world due to an increase in emissions of greenhouse gases, such as carbon dioxide (CO2). The amount of CO2 emitted by the use of fossil fuels in cement production accounts for about 6∼8 % of the total domestic CO2 emissions, and 0.7 to 0.9 tons of CO2 is generated during production of one ton of cement. Thereby, the attracted much interest in the development of new materials that can be substituted for cement to reduce carbon dioxide emissions have been made in many studies of high-performance environment-friendly concrete.
As a way to solve the problem, the construction industry can make an effort to reduce the production of cement, or use eco-friendly concrete geopolymer of utilizing the industrial products instead of using cement.
This study includes the understanding of the physical properties of geopolymer mortar, and the purpose of this study is to investigate the expansion of alkali-activated geopolymer mortar containing reactive aggregate due to alkali-silica reaction. The test method included expansion measurement of the mortar bar specimens and the determination of the morphology and composition of the alkali-silica reaction products by scanning electron microscopy(SEM), energy dispersive x-ray(EDX).
The results of the experimentation are:

1) Table flow in accordance with alkali activator is little difference, workability was reduced when alkali activator mol concentration have increased Also. This is the hightest figure when table flow of geopolymer mortar used single binder but metakaolin was measured just a little Check to workability similar to standards specimen at 110∼135 mm when binary blended binder was used.

2) When High Temperature Curing from 80 ℃ than 20 ℃, compressive strength in accordance with curing temperature of geopolymer appeared to highest by 42.52 MPa when composition rate 75 % of binary blended binder used sodium hydroxide and sodium silicate and fly ash 25 %. Compressive strength of Binary Blended geopolymer increased when composition rate of binary blended binder have increased.

3) The rate of expansion have decreased when relative composition rate of binary blended binder have increased and then standards specimen used only cement shows that the rate of expansion appeared in the solution immersion material age of 14 days, geopolymer normally shows to safe less than 0.1 % from Alkali-silica reaction
but It is seems to be unfavorable that the higher relative composition rate of metakaolin have increased rate of expansion.

4) The result of observation micro structure of the reaction products when Alkali silicate gel was able to identify inside of air gap of geopolymer mortar, It is identified that geopolymer mortar used fly ash + binary blended binde generated C-S-H

There needs to be further research regarding changes in chemical characteristics, such as resistance from Alkali-Silica Reaction. Also, research not only for binary blended geopolymer, but also for ternary blended and multicomponent blended geopolymer mortar needs to be conducted to find better mixture rate.

목차

Ⅰ. 서 론 1
1.1 연구 배경 및 목적 1
1.2 기존 연구의 동향 3
1.3 연구 내용 및 방법 4
Ⅱ. 예비적 고찰 7
2.1 지오폴리머 7
2.1.1 정의 7
2.1.2 구성재료 8
2.1.3 반응 메커니즘 및 특성 14
2.2 알칼리-실리카 반응 17
2.2.1 반응 메커니즘 17
2.2.2 억제 메커니즘 24
2.2.3 반응 시험법 28
Ⅲ. 실험계획 30
3.1 시편계획 30
3.1.1 실험인자 및 수준 30
3.1.2 시편의 제작 및 양생 31
3.2 사용재료 32
3.2.1 플라이애쉬 32
3.2.2 고로슬래그 32
3.2.3 메타카올린 33
3.2.4 잔골재 34
3.2.5 알칼리 용액 36
3.3 실험방법 39
3.3.1 테이블 플로 39
3.3.2 모르타르 휨강도 40
3.3.3 모르타르 압축강도 41
3.3.4 촉진 모르타르 봉 방법 41
3.3.5 미세구조 42
3.3.6 화학적 성분 43
Ⅳ. 실험결과 및 고찰 44
4.1 테이블 플로 44
4.1.1 단일결합재에 따른 테이블 플로 45
4.1.2 상대적 구성비율에 따른 테이블 플로 46
4.2 압축강도 48
4.2.1 양생온도에 따른 압축강도 48
4.2.2 알칼리 활성화제 종류와 몰 농도 따른 압축강도 50
4.2.3 결합재 종류와 구성비율에 따른 압축강도 52
4.3 휨강도 54
4.4 팽창률 60
4.5 반응생성물의 미세구조 및 화학적 성분 67
Ⅴ. 결 론 69
참 고 문 헌 71
Abstract 75

최근 본 자료

전체보기

댓글(0)

0