메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

오진환 (부산대학교, 부산대학교 대학원)

지도교수
남유진
발행연도
2016
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (7)

초록· 키워드

오류제보하기
Recently, issues for environmentally friendly architecture and energy reduction have also been raised. Currently there are various regulations on energy consumption in different countries all over the world. There are still difficulties in dealing with problems associated with increasing energy demand, especially those during peak electricity demand. To solve these problems, technologies enabling the application of new renewable energy have been emerged. Of them, geothermal heat pumping system has been expected to realize an effective saving in heating and cooling energy because it would exploit the geothermal power that is stable all year round. However, comparatively high cost associated with the installation of such facilities and limited sites for such installation have slowed the propagation of such facilities, especially, in small-size buildings. Therefore, it is necessary to develop small-size ground heat exchanger with low cost and quick installation. Therefore, in this research, in order to reduce the initial cost, the unit-type ground heat exchanger was developed. In this paper, the system performance according to design factor was analyzed by the integrated simulation with ground heat transfer model, ground heat exchanger model and ground surface heat flux model. In addition the verification experiment was performed based on simulation results, possibility of introduction were analyzed through the comparison conventional vertical closed loop system with Initial cost. This paper of the contents of this study are as follows.
? As a result of heat extraction according to pipe distance of underground heat exchanger and distance of heat exchanger, it was confirmed that the distance of heat exchanger had greater influence on the heat exchange rate rather than the pipe distance of ground heat exchanger.
? The effect of installation depth was analyzed. Result of the analysis showed the difference about 19% in heat exchange rate according to installation depth.
? As the results of characteristic of heat extraction according to grouting materials, using Cement - Silica sand - Graphite(case 3) showed 16% higher performance of heat exchange than using Bentonite - Silica sand - Graphite (case 2).
? As the results of characteristic of heat extraction according to pipe diameter of underground heat exchanger and distance of heat exchanger, the heat exchanger rate per unit length increases up to around 40% as heat exchanger rate per unit length is longer and around 62% as pipe diameter is bigger in same soil condition.
? In the result of verification experiment, COP of cooling experiment was 5.47 and experiment of heating was 4.13.
? In the result of economic assessment, it shows a about 45% saving effect on construction cost compared with the vertical closed loop heat exchanger system.

목차

1. 서 론 1
1.1 연구배경 및 목적 1
1.2 연구범위 및 방법 3
2. 지열 히트펌프 시스템의 개요 5
2.1 건축에서의 신재생에너지 이용 5
2.2 지열 시스템 11
2.2.1 지열시스템 개요 11
2.2.2 지열시스템 종류 12
2.2.3 지열 히트펌프 시스템의 원리 13
2.2.4 지열 히트펌프 시스템의 장점 14
2.2.5 지열 시스템의 그라우트 재료 15
2.3 국내외 동향 및 선행연구 16
2.3.1 국내외 동향 16
2.3.2 지중열교환기의 성능분석에 관한 연구 18
2.3.3 설계 및 설치 조건에 관한 연구 20
2.4 유닛형 지중열교환기 25
3. 해석수법 검토 및 수치모델 검증 26
3.1 시뮬레이션 개요 26
3.2 지중 채열량 예측 수법 27
3.2.1 시뮬레이션 코드 FEFLOW 27
3.2.2 지중열 이동 해석코드 28
3.2.3 지표면 Heat flux 해석코드 29
3.3 유닛형 지중열교환기 해석조건 31
3.3.1 사이간격 및 거리에 따른 채열특성 분석 33
3.3.2 설치위치에 따른 채열특성 분석 36
3.3.3 그라우트 재료에 따른 채열특성 분석 38
3.3.4 관경 및 이격거리에 따른 채열특성 분석 40
4. 수치해석을 활용한 채열량 예측 42
4.1 파이프 간격 및 거리에 따른 채열특성 분석 42
4.2 설치위치에 따른 채열특성 분석 45
4.3 그라우트 재료에 따른 채열특성 분석 49
4.4 관경 및 이격거리에 따른 채열특성 분석 51
5. 현작적용 가능성 및 성능검증 56
5.1 현장적용 가능성 검토 56
5.1.1 시작품 제작 57
5.1.2 실증실험 모니터링 설비 구축 58
5.2 실험 결과 61
5.2.1 난방 운전 61
5.2.2 냉방 운전 64
6. 경제성 평가 70
7. 결 론 73
참고 문헌 76
Abstract 82

최근 본 자료

전체보기

댓글(0)

0