메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

유동석 (부산대학교, 부산대학교 대학원)

지도교수
김용태
발행연도
2016
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수15

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Thermo-electrochemical cells (TECs) based on the redox reaction of hexacyanoferrate (HCF) are energy harvesters which can convert low-grade waste heat (below the boiling point of water) into electricity. This system has some advantages that are simple design, good maintenance, high seebeck coefficient and so on. However, there are hurdles to commercialize the TEC, one of those things is the high manufacturing cost resulting from the employment of high-cost electrode materials like Pt, graphene, and carbon nanotubes because of the stability of redox reactions. Hence, it still needs further studies to develop the new systems which have high conversion efficiency with low-manufacturing cost.
Herein, we report the hybrid TECs having both concepts with exploitation of low-cost non-noble W for the electrode materials in TECs. We made the high accuracy temperature control system which has 0.1℃ control ranges. We choose low-cost non-noble W for the electrode materials using the Pourbaix diagram and Cyclic voltammetry (CV) measurements. To assess cell performance in relation to W electrode, we did electrochemical experiments with Linear Sweep Voltammetry (LSV) method. As a result, we interestingly found a possibility of the new hybrid TECs system that has surpassed conventional seebeck coefficient. Moreover, we analyzed the reaction mechanism of hybrid systems with X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Near-edge Structure (XANES) measurements. Hybrid TECs not only has high conversion efficient but also can reduce the manufacturing cost about 1/1500 of Pt electrode TECs. Therefore, this study can suggest new directions lead to the development of ideal TECs.

목차

제1장 서론 1
1.1 연구배경 1
1.2 선행연구 6
1.2.1 Undeveloped Thermoelctrochemical cells 6
1.2.2 Redox Electrolytes 7
1.2.3 High Surface Area Electrodes 7
1.3 연구목적 9
제2장 이론적 배경 10
2.1 열전기화학 에너지 하베스터 원리 10
2.1.1 Nernst Equation 11
2.1.2 Butler-Volmer Equation 14
2.1.3 Polarization 15
2.2 열전기화학 에너지 하베스터 구성 18
2.3 열전기화학 에너지 하베스터 성능 19
2.3.1 Seebeck Coefficient 19
2.3.2 Open Circuit Potential & Current Density 20
2.3.3 Power Density 21
2.4 하이브리드 열전기화학 에너지 하베스터 23
2.5 Pourbaix Diagram 25
2.6 Arrhenius 방정식 26
제3장 실험방법 28
3.1 온도차 형성 시스템 28
3.2 열-전기화학 특성 평가 30
3.2.1 Cyclic Voltammetry 30
3.2.2 Linear Sweep Voltammetry 31
3.2.3 Power Density 31
3.3 반응 메커니즘 분석 32
3.3.1 X-ray Absorption Near Edge Structure 32
3.3.2 X-ray Photoelectron Spectroscopy 33
제4장 실험결과 및 고찰 34
4.1 열-전기화학 특성 34
4.1.1 Cyclic Voltammetry 34
4.1.2 Open Circuit Potential 36
4.1.3 Open Circuit Current Density 37
4.1.4 Power Density 38
4.2 반응 메커니즘 39
4.2.1 Arrhenius Plot 39
4.2.2 X-ray Absorption Near Edge Structure 41
4.2.3 X-ray Photoelectron Spectroscopy 43
제5장 결론 46
참고문헌 51
ABSTRACT 82

최근 본 자료

전체보기

댓글(0)

0