메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김별 (한국해양대학교, 한국해양대학교 대학원)

발행연도
2016
저작권
한국해양대학교 논문은 저작권에 의해 보호받습니다.

이용수10

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
According to Ministry of Public Safety and Security’s statistical data of ship fire, ship fire have occurred more than 74 times every year in recent 5years. At 2015, 115 accidents of fire and explosion have happened. Due to special environment as sea for ships, it is hard to get support from outside. And complex structure with narrow passages makes rescue harder and can cause many life and property loss. Although air supply·exhaust system makes air flow circulation, ships can’t naturally emit smoke because of high air tight structure. However, if this is not controlled properly, smoke can be spreaded very fast all over the ship when fire occurs. Appropriate smoke control is necessary because more than 85% of life losses is caused by suffocation and toxic gas due to smoke diffusion in fire accidents. However there are no research of smoke diffusion control of ship fire. Therefore in this study smoke movement characteristics by air supply·exhaust system is studied first in interior area. Then the fir simulation program Fire Dynamics Simulator(FDS), is used to study the influence of design factor on the performance of smoke ventilation on ship fire.
Main Deck is selected through out Second, Upper and Shelter Deck in Training Ship and simulated by applying the blueprint of where and capacity of air supply·exhaust. The area of fire occurrence is when air supply or exhaust works. Except the area of fire occurrence in Main Deck, scenario is made of 3 cases when air supply·exhaust all works, air supply works or exhaust works.
The result of smoke movement simulation is as followed. When fire occurred while air supply system was working, due to supply of air, irrespective of scenario, smoke have spreaded very fast. And by seeing the reaching time of limit visibility value 5m, it has a little difference between scenario and positions. However it showed that transportation to safe area should be done before 62 seconds. When fire occurred where exhaust system was working, smoke was exhausted but the speed of smoke diffusion was faster than air exhaust speed . So, after 80 seconds of the occurrence of fire, the smoke was full in corridors. And by checking the time of reaching limit visibility value 5m, it is necessary to evacuate the fire occurrence area before 75 seconds. Concluding these results, when ship is on fire, the differences of air supply·exhaust ways also changes the evacuation time by at least 14 seconds. Especially air supply system should be stopped immediately due to fast speed of smoke spreading.

목차

1. 서 론
1.1 연구배경 및 목적 1
1.2 기존연구 고찰 3
1.3 논문의 내용 및 구성 5
2. 선박화재특성 및 제연설비 기준
2.1 선박화재특성과 사고사례 6
2.1.1 선박화재특징 6
2.1.2 선박의 화재유형 및 소화요령 7
2.1.2.1 거주구역의 화재 7
2.1.2.2 기관구역의 화재 8
2.1.2.3 화물구역의 화재 10
2.1.3 선박화재 사고사례 11
2.2 제연설비 및 관련 기준 12
2.2.1 제연설비 12
2.2.2 건축물의 제연설비 관련 기준 13
2.2.3 선박의 제연설비 관련 기준 15
2.3 화재위험성 평가기준 16
3. 실내공간의 화재이론 및 연기거동 해석
3.1 화재 및 연기거동 이론 18
3.2 시뮬레이션 툴 및 이론 19
3.2.1 난류모델 19
3.2.2 연소모델 20
3.2.3 복사모델 22
3.2.4 가시도모델 23
3.3 실내공간 화재 시 급·배기시스템에 따른 연기거동 해석 24
3.3.1 실내공간의 개요 24
3.3.2 실내공간의 시뮬레이션 모델링 및 시나리오 25
3.3.3 실내공간의 급·배기시스템에 따른 연기거동 해석 28
4. 선박화재 시 급·배기시스템에 따른 연기거동 해석
4.1 선박의 개요 41
4.1.1 선박의 개요 41
4.1.2 선박의 소화설비 43
4.1.3 선박의 공기조화 시스템 44
4.2 선박의 시뮬레이션 모델링 및 시나리오 45
4.3 선박화재 시 급·배기시스템에 따른 연기거동 해석 47
4.3.1 Case 1의 시나리오별 결과 47
4.3.2 Case 2의 시나리오별 결과 54
4.3.3 Case 3의 시나리오별 결과 61
4.4 선박화재 시 급·배기시스템 작동방식 제안 및 개선효과 68
4.4.1 제연성능 향상을 위한 급·배기시스템 작동방식 제안 68
4.4.2 제안방식에 따른 개선효과 69
5. 결론
참고문헌 80

최근 본 자료

전체보기

댓글(0)

0