메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

Thinh Phu Do (경희대학교, 경희대학교 대학원)

지도교수
Yun Hee Kim
발행연도
2016
저작권
경희대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
A new paradigm in communications referred to as Internet of Things (IoT) has
emerged to connect everything including devices, humans, environments, processors, and
data for autonomous transmission of sensed data and control information. Various IoT
services are now being emerging to realize smart homes and cities as well as to reduce
the cost in business so that the number of IoT devices are expected to increase up to
50 billions by 2030. In supporting such various IoT services, wireless communications
should be reshaped and redesigned to satisfy diverse requirements such as low-latency and
high reliability for critical communications, large coverage and massive connectivity for
scattered sensing devices, energy efficiency for battery life extension for embedded devices.
This thesis envisages cooperative communications and wireless powered communications
as enabling technologies meeting such IoT requirements as high reliability at the
extended coverage, energy efficiency, and battery life extension. Cooperative communications
exploit neighboring nodes to create diversity channels robust to fading as well as to
replace a long-distant channel by multiple short-distant channels for the significant reduction
in a propagation loss. Wireless powered communications charge the devices through
radio-frequency signals remotely to extend their battery lifetime before communications,
which avoids frequent replacements of devices placed in the hazardous and vast areas.
On the other hand, the coexistence of overwhelmingly massive devices motivates a
more efficient utilization of limited wireless resources in time, power, and frequency. It
is thus necessary to design efficient resource allocation algorithms to boost the overall
system performance. In this thesis, we tackle several resource allocation problems for
cooperative communications and wireless powered communications systems to meet the
quality-of-services.
We begin with optimizing a multi-hop one-way relaying network to support a long
range transmission from a source node to a destination node with the help of relay nodes.
For the network, we develop several optimization schemes in power allocation (PA) and
relay position (RP) to minimize the outage probability in a generalized fading channel
models. The analysis on the optimization schemes reveal that the optimization of PA
improves only the coding gain while the optimization of RP improves not only the coding
gain but also the diversity order. In addition, the joint optimization of PA and RP leads
to a significant improvement in the overall outage performance.
Next, resource allocation problems are studied for a two-way relaying (TWR) network
which adopts physical layer network coding for efficient spectrum utilization. The TWR
network allows two source nodes to exchange their information with the help of a relay
node in two time slots rather than in four time slots required for conventional OWR. We
attempt to optimize PA and time allocation (TA) in two time slots in a way of minimizing
the outage probability in supporting asymmetric rates of the two sources. The analysis
shows that the optimizing PA is beneficial for any rate configuration while the optimizing
TA is beneficial for highly asymmetric rate transmission.
We then introduce wireless power communication into the TWR network such that
the relay not only decodes the information but also harvests the energy from the signal
transmitted by the sources in the first slot. To realize both information transmission and
energy harvesting at relay, we adopt two common energy harvesting architectures of power
splitting (PS) and time switching (TS) in simultaneous wireless information and power
transfer (SWIPT). For each architecture, we design a resource allocation of optimizing the
PS ratio for the PS-SWIPT and the TS ratio for the TS-SWIPT as well as optimizing the
TA of the two time phases of the TWR network.
Finally, we investigate a full-duplex wireless powered communication network such
that a hybrid access point charges the devices in the downlink while the devices utilize
the harvested energy to transmit their signal in the uplink. For the network, we design
a resource allocation of PA for the downlink wireless power transfer and TA for both
the downlink wireless power transfer and the uplink information transfer to maximize the
system sum throughput. Although the conventional study ignores the self-interference in
full-duplex mode, we assume imperfect self-interference cancelation in resource allocation
with energy causality which is a more practical scenario. The problem is highly non-convex
but is approximated to a second-order cone problem for the fast and reliable computation

목차

List of Figures v
Abbreviations viii
1 Introduction 1
1.1 Motivations and Previous Works . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Cooperative Communication . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Wireless Powered Networks . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Optimization of Power Allocation and Relay Position in Multi-Hop Re-
lay Networks 7
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Multi-hop AF Relaying in Generalized Fading . . . . . . . . . . . . . . . . . 10
2.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 System Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Joint Optimization of PA and RP . . . . . . . . . . . . . . . . . . . 14
2.3.2 Optimization of PA for Fixed RP . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Optimization of RP for Fixed PA . . . . . . . . . . . . . . . . . . . . 18
2.4 Asymptotic Optimized Performance . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Coding Gain and Diversity Order in General Fading Models . . . . . 20
i
2.4.2 Optimization Gains in Specific Fading Models . . . . . . . . . . . . . 23
2.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 Outage-Optimal Resource Allocation for Two-Way Relaying 33
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 System Model and Performance Metric . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Performance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Joint Optimization of PA and TA (OPA-OTA) . . . . . . . . . . . . 40
3.3.2 OPA with Suboptimal Two-Level TA (OPA-S2TA) . . . . . . . . . . 42
3.3.3 OPA with Suboptimal One-Level TA (OPA-S1TA) . . . . . . . . . . 44
3.3.4 OPA with Equal TA (OPA-ETA) . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Equal PA and Equal TA (EPA-ETA) . . . . . . . . . . . . . . . . . . 45
3.4 Outage Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 OPA-OTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 OPA-S2TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.3 OPA-S1TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.4 OPA-ETA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.5 EPA-ETA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Asymptotic Outage Performance . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.1 OPA-OTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.2 OPA-S2TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.3 OPA-S1TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.4 OPA-ETA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.5 EPA-ETA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 SNR Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ii
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4 Simultaneous Wireless Transfer of Power and Information in Two-Way
Relaying Network 63
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 System Model and Performance Metric . . . . . . . . . . . . . . . . . . . . . 67
4.2.1 DF-TWR with PS-SWIPT . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.2 DF-TWR with TS-SWIPT . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Performance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Resource Allocation for PS-SWIPT . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.1 Optimal PS with optimal TP (OPS/OTP) . . . . . . . . . . . . . . 71
4.3.2 Optimal PS with Suboptimal TP Type I (OPS/STP-I) . . . . . . . 73
4.3.3 Optimal PS with Suboptimal TP Type II (OPS/STP-II) . . . . . . 75
4.3.4 Other Suboptimal Schemes . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Resource Allocation for TS-SWIPT . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.1 Optimal TS and TP (OTSTP) . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Suboptimal TS and TP Type I (STSTP-I) . . . . . . . . . . . . . . . 80
4.4.3 Suboptimal TS and TP Type II (STSTP-II) . . . . . . . . . . . . . . 81
4.4.4 Equal TS and TP (ETSTP) . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5 Resource Allocation in Full-Duplex Wireless-Powered Communication
Network 91
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . 93
5.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Joint PA and TA Optimization . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 PA Optimization for Equal TA . . . . . . . . . . . . . . . . . . . . . 98
iii
5.3.3 TA Optimization with Equal PA . . . . . . . . . . . . . . . . . . . . 100
5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6 Concluding Remarks and Future Works 104
A Proofs for Chapter 2. Optimization of Power Allocation and Relay Po-
sition in Multi-Hop Relay Networks 106
A.1 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.2 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.3 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B Proofs for Chapter 3. Outage-Optimal Resource Allocation for Two-
Way Relaying 109
B.1 Derivation of OPA P?
(δ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.2 Proof of Λoo ≤ U1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.3 Explicit Expressions of (3.41) and (3.42) . . . . . . . . . . . . . . . . . . . . 112
B.4 Derivation of (3.51) and (3.52) . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.5 Proof of (3.63) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.6 Closed-Form Expressions for π12 and π21 . . . . . . . . . . . . . . . . . . . . 115
B.7 Asymptotic Performance of FL(δ1,δ2)(1) . . . . . . . . . . . . . . . . . . . . . 115
C Proofs for Chapter 4. Simultaneous Wireless Transfer of Power and
Information in Two-Way Relaying Network 117
C.1 Derivation of Gλ1,λ2(x;α, β) . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
C.2 Derivation of Kλ1,λ2(x;α, β) . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Bibliography 137

최근 본 자료

전체보기

댓글(0)

0