메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이승철 (수원대학교, 수원대학교 대학원)

지도교수
오성권
발행연도
2016
저작권
수원대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
In this thesis, radial basis function neural networks based on incremental fuzzy clustering are designed for big data processing. Radial basis function neural networks consist of condition, conclusion and inference phase. Gaussian function is generally used as the activation function of the condition phase, but in this study, incremental fuzzy clustering is considered as the activation function of radial basis function neural networks, which could effectively do big data processing. There are two incremental clustering techniques such as single data incremental type and group data incremental type. These techniques depend on the processing method of data. In the conclusion phase, the connection weights of networks are given as the coefficients of linear polynomial function which is the extended type of constant term. And then the connection weights are calculated by the least square estimation-based learning. There are two estimation methods such as recursive least square estimation and block least square estimation, which could effectively do big data processing. The recursive least square estimation and the block least square estimation depend on the processing method of data like as the incremental fuzzy clustering techniques indicated previously. In the inference phase, a final output is obtained by fuzzy inference method. Some machine learning datasets are considered to evaluate the performance of the proposed model as well as pattern classifier, and the experiments are carried out for two methods such as modeling and pattern classification. Root mean square error and pattern classification rate are used as the performance index of modeling as well as pattern classification. From the experiments results, the proposed model and pattern classifier are compared with other previous studies and also analyzed.

목차

Ⅰ. 서 론 1
1. 연구 목적 1
2. 연구내용 및 방법 2
Ⅱ. 본 론 5
1. Fuzzy C-Means 클러스터링 알고리즘 5
2. RBF 신경회로망의 구조 및 학습 8
1) RBF 신경회로망의 구조 8
2) RBF 신경회로망의 학습 : Least Square Estimation 10
3. 증분형 FCM 기반 RBF 신경회로망의 구조 및 학습 12
1) Single Data 증분형 기반 RBF 신경회로망 13
(1) 전반부 구조 : Iterative Fuzzy C-Means 14
(2) 후반부 학습 : Recursive Least Square Estimation 19
2) Group Data 증분형 기반 RBF 신경회로망 23
(1) 전반부 구조 : Group Fuzzy C-Means 24
(2) 후반부 학습 : Block Least Square Estimation 29
Ⅲ. 실험연구 및 결과고찰 31
1. 패턴분류 실험 34
1) Pima 35
2) Shuttle 38
3) MNIST 41
4) 기타 44
2. 모델링 실험 48
1) Boston Housing 49
2) Combined Cycle Power Plant 52
3) Physicochemical Properties of Protein Tertiary 54
Ⅳ. 결 론 57
참 고 문 헌 58
ABSTRACT 62

최근 본 자료

전체보기

댓글(0)

0