메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

송인형 (충남대학교, 忠南大學校 大學院)

지도교수
노명규
발행연도
2016
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The MagLev train are equipped with gap sensor for levitation control. the gap sensor, which is measuring the air gap between electro-magnet and rail, and its controlled constant range. the rail of maglev train can be modified by external condition, which is rail joint, land erosion cause by girder and so on.
These conditions, called jumps in this paper, have a considerable affect on the ride comfort and stability of maglev train. Therefore irregularity of guideway surface should be monitored and managed. There are few kinds of methods of detecting rail irregularities. In a previous research, a jump measuring equipment was used. Another method is the GMS(Guideway Monitoring System) which is in shanghai MagLev line. However, these methods are limited as static measurement demanding lots of time and effort. Instead, the rail irregularities could be measured by using sensors, like as gap, acceleration, current signal, during vehicle running.
In this study, we established the maglev system in 3-dof dynamic model and mathematical analysis were carried out using computer simulation. also we compared simulation data and experimental data to validate the virtual plant. after then, we verified the proposed algorithm, which is double integration, using virtual plant.
If we can use the virtual plant, the limits which are velocity and heigh of jump in small scale maglev train could be overcome. Therefore we designed 3-dof dynamic model based on small-scale maglev train and mathematical analysis were carried out while 3-dof dynamic model passing through the disturbance input using computer simulation. To validate the virtual model, Experiment is performance the same condition using small-scale maglev train. the validation of virtual plant is compared simulation with experiment result.
Also, we proposed double integration algorithm which is wavelet method. using virtual plant, we create the acceleration signal and carried out double integration. The result show that double integration algorithm is not suitable for detecting the guideway jumps. we need an additional study for other algorithms like as kalman Filter and so on. and acceleration sensor should be replaced for additional experiment.

목차

Ⅰ. 서 론 1
1. 연구 배경 1
2. 연구 동향 3
3. 연구 목적 및 연구 내용 5
Ⅱ. 본 론 6
1. 가상 모델 6
1.1 1자유도 모델 6
1.2 3자유도 모델 11 2. 가상 모델을 활용한 시뮬레이션 16
2.1 시뮬레이션 결과 16
2.1.1 1자유도 16
2.1.2 3자유도 18
3. 가상 모델 검증 실험 21
3.1 실험 장치 구성 21
3.1.1 자기부상 축소형 차량 21
3.1.2 데이터 취득 장치(dSPACE) 23
3.1.3 기타 24
3.2 실험 방법 25
3.2.1 실험 장치 셋팅 26
3.2.2 데이터 취득 27
3.3 실험 결과 28
4. 이중적분(Double integration)을 활용한 알고리즘 연구 31
4.1 이중적분(Double integration) 31
4.1.1 이중적분 방법 31
4.1.1.1 시간 영역 방법 31
4.1.1.2 주파수 영역 방법 32
4.1.1.3 웨이블렛(wavelet)을 이용한 방법 32
4.1.2 웨이블렛(wavelet)을 이용한 이중적분 34
4.1.2.1 Wavelet Filter Bank(WFB) 34
4.1.2.2 Wavelet Baseline Correction(WBC) 34
4.2 가상 모델을 활용한 이중적분 35
4.2.1 가상 테스트 35
4.2.1.1 테스트1 35
4.2.2 이중적분 결과 36
Ⅲ. 결론 및 고찰 38
Ⅳ. 참고 문헌 39
Ⅴ. Appendix 40
ABSTRACT 44

최근 본 자료

전체보기

댓글(0)

0