메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

고종민 (조선대학교, 조선대학교 산업기술융합대학원)

지도교수
이상웅
발행연도
2016
저작권
조선대학교 논문은 저작권에 의해 보호받습니다.

이용수4

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
As the trend of aging in Korea grows rapidly, age-related diseases are also becoming more serious. There is a type of dementia, Alzheimer’s disease, Frontotemporal Dementia, Parkinson’s Dementia, Lewy Body Dementia, Vascular Dementia, Chronic Tranumatic Encephalopathy. In particular, dementia, especially, Alzheimer’s disease (AD), is one of the increasing concerns because the incidence rate is increasing with age. Depending on the recent researches that AD can be cured if it can be early diagnosed, the importance of early diagnosis of AD are getting more attention. There are several neuroimaging methods such as Positron Emission Tomography(PET) and Magnetic Resonance Imaging(MRI) for diagnosis of AD.
The main aim of this research is to distinguish patients using MRI data which are easily affordable to us these days. For this purpose, we compared several classification algorithms in the field of pattern recognition using MRI-specific information. More specifically, for the classification of cognitively normal (CN), mild cognitive impairment (MCI), and AD subjects, we used Principal Component Analysis(PCA), Linear Discriminant Analysis(LDA), Support Vector Machine(SVM), Neural Networks (NNs), and Deep Learning.
We briefly analyzed the characteristics of each algorithm, and compared them in the classification problemto find the suitable algorithm for assisting the diagnosis of AD progression. A result indicates the degree to distinguish the cognitively normal(CN), mild cognitive impairment(MCI), and Alzheimer’s disease(AD). The results of the principal component analysis and linear discriminant showed the picture, The result of support vector machine is about 63%, Neural Networks is about 39%, Convolution Neural Networks is about 33%. We still use support vector machine algorithms. But more than 150 features, more than 1000 data is expected that, if I get a good result in Deep Learning.

목차

ABSTRACT
Ⅰ. 서론 1
1. 치매의 개념 1
2. 치매연구 배경 및 목적 2
3. 치매연구 내용 및 방법 4
Ⅱ. 관련 연구 5
1. PCA 5
2. LDA 8
3. SVM 10
3.1 선형 SVM 10
3.2 비선형 SVM 11
4. Deep Learning 12
4.1 ANN 12
4.2 CNN 14
Ⅲ. 연구방법 18
1. 비교평가단계 구성 17
2. MRI 전처리 과정 18
Ⅳ. 실험 및 결과 21
1. 데이터 셋 21
2. 실험 결과 분석 24
Ⅴ. 결론 33
참고문헌 34

최근 본 자료

전체보기

댓글(0)

0