메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김현숙 (전북대학교, 전북대학교 일반대학원)

지도교수
김진승
발행연도
2016
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수14

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Zoom optics is important in many applications and especially IR zoom optics in military applications for reconnaissance, detection and recognition of important targets. As IR array detectors of small pitch and large format become commonly available, performance requirement of IR zoom optics has been upgraded for better spatial resolution, lighter weight, and smaller size which is particularly relevant to airborne IR zoom optics.

This thesis addresses two main issues usually raised in the development of an airborne IR zoom optics: the design of a compact system and a smart management of tolerance for better performance. The design of a compact system proceeds in three phases. In the first phase, the basic concept and layout of the optical system is determined. In the next phase, a method is devised to equalize the pixel response of the IR detector in the system. In the third stage, the system is athermalized.

In the first phase, the reimaging structure is applied to the optics to obtain a 100% of cold stop efficiency and to minimize the size of optical aperture. In addition, the overall package size can be reduced and the optics has the flexibility in the layout by the installation of folding mirrors.

In the second phase, the new approach which provides the blurred image to the detector by the use of a variator of the zoom optics is proposed. Through, the IR detector is able to have a uniform image to effectively correct the non-uniformity of it without any opto-mechanical support and extra space.

In the third phase, an efficient method for the athermalization which uses the zoom loci of the zooming lenses depending on the temperature variations is applied to the zoom optics and its performance is verified through the thermal analysis. In fact, this approach does not require any additional moving mechanism and space. Thus it can make the system compact and simple.

As for the tolerance management, both tolerances of fabrication and assembling are combined to correctly predict the real performance of the completed system. The wavefront error of the system is analyzed by utilizing Zernike polynomials and the sensitivity of the various parameters to the tolerances is obtained. Based on this sensitivity analysis, the optimal tolerance of fabrication parameters are determined and the best compensators for assembly process are selected. By using this method one can accurately predict the best possible performance of a completed optical system in practice with good confidence.

목차

1. 서 론 1
2. 적외선 줌 광학계의 공간 최적화 설계방안 연구 3
2.1 적외선 광학계 특징 3
2.1.1 적외선 광학재질 3
2.1.2 콜드스톱 5
2.1.3 비열화 9
2.1.4 불균일 보정 광학계12
2.2 줌 광학계 특징 15
2.2.1 줌 광학계 정의 15
2.2.2 줌 광학계 분류 15
2.2.3 줌 렌즈 형태 설계방안 21
3. 공차분석 방안 연구 22
3.1 연구배경 22
3.2 제안하는 공차분석 방안의 특징 23
3.3 민감도 분석 방안 26
3.3.1 파면오차와 쩨르니케 다항식 26
3.3.2 민감도와 미소변위 30
3.3.3 민감도 분석 32
3.4 초기 조립정렬 후 성능예측 방안 37
3.4.1 몬테카를로 시뮬레이션을 이용한 통계적 성능예측 37
3.4.2 성능예측 수행 절차 39
4. 적용 결과 41
4.1 설계 요구사양 분석 41
4.1.1 광학계 요구사양 41
4.1.2 광학계 설계사양 42
4.2 공간 최적화 설계방안 적용 결과 48
4.2.1 광계통 설계 48
4.2.2 불균일 보정 광학계 53
4.2.3 비열화 보상 55
4.3 공차분석 방안 적용 결과 60
4.3.1 적외선 줌 광학계의 민감도 분석 60
4.3.2 조립정렬 후 성능예측 79
4.3.3 성능측정 82
5. 결 론 84
참고문헌 86

최근 본 자료

전체보기

댓글(0)

0