메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이미연 (전북대학교, 전북대학교 일반대학원)

지도교수
서준호
발행연도
2016
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this work, we explored RF(Radio-Frequency) thermal plasma synthesis routes for Ni-CeO2 nano-catalyst and GDC(Gd doped CeO2) nano-powders, which are aimed at fuel reforming and electrolyte applications in IT-SOFC(intermediate temperature solid oxide fuel cell), respectively. For this purpose, solid precursors were prepared by mixing Ni metal and CeO2 of several ㎛ in size at the mole ratio of 5:5 and 3:7 for Ni-CeO2 nano-catalyst while CeO2 and Gd2O3 powders were also mixed at the cation ratio of 8:2 and 9:1 for GDC(Gd doped CeO2) nano-powders. Then, the prepared mixture precursors were injected into RF thermal plasma for the in-flight treatment along the centerline of the torch.
The in-flight RF thermal plasma treatment of the mixture precursor, such as Ni-CeO2 solid mixture can be expected to cause a preferential evaporation of Ni metal, which may lead to the formation of the highly dispersed active metal sites on the CeO2 surfaces in spite of the high Ni content of 50 mol%. Meanwhile, the precursor powders consisting of Gd2O3 and CeO2, if they are vaporized simultaneously in the same RF torch, can be predicted to co-condense into the GDC nano powders. As presented from numerical analysis results on the plasma-particle (such as Ni, CeO2 and Gd2O3) interaction in this work, for example, Ni metal can experience a preferential evaporation at relatively low power level of ~10 kW while full evaporation of CeO2 and Gd2O3 powders needs RF thermal plasma with high power level of ~ 50 kW. According to these basic numerical results based on the physical properties of precursor materials, we tested each synthesis route using RF thermal plasma systems with the power levels of 60 kVA and 200 kVA, respectively.
As for the synthesis routes of Ni-CeO2 nano-catalyst, firstly, it was confirmed that Ni-CeO2 nano catalysts with high nickel content up to 50 mol% can be successfully prepared in the form of highly dispersed active Ni sites on the CeO2 surfaces using RF thermal plasma. In addition, XRD and H2-TPR results of the as-prepared catalysts revealed that many of these active Ni sites formed a NiO solid solution layer on a CeO2 surface. This can help the resistance of the as-prepared catalyst to carbon deposition at intermediate temperature of ≥ 550 ℃ during the partial oxidation of methane, which was verified from the performance test results of the as-prepared Ni-CeO2 catalysts for partial oxidation of methane, showing a methane conversion rate of ≥ 70 % as well as the selectivities of CO and H2 greater than 90 % at 550 ℃ - 650 ℃. In particular, no carbon deposition is found for the as-prepared catalyst used in the 24 h test at 550 ℃ in spite of the high Ni content of 50 mol%. From these advantages of the as-prepared catalyst, the as-prepared catalysts is expected to be applied as a fuel reforming catalyst for IT-SOFC.
For the GDC nano powders prepared by RF thermal plasma at a plate power level of ~140 kVA, FE-SEM images showed that micron-sized mixture precursor was reformed into nano powders of ≤ 50 nm. Considering very short residence time of several ㎲ in RF torch, this reformation indicates that the evaporation of solid precursor took a place simultaneously due to the high plate power of ~140 kVA. In addition, TEM-EELS and X-ray diffraction patterns of the as-synthesized powders showed that Gd atoms were incorporated into the CeO2 lattices, which means that Gd doping process can be realized during the quenching of the vapor species from Gd2O3 and CeO2 as expected previously. In order to estimate the applicability as an electrolyte material for IT-SOFC, the as-prepared GDC nano powders were sintered and the sintered body was used as a target of RF sputtering device to produce GDC thin films. Then, the electrical conductivities of the GDC thin films were measured according to Van der Pauw’s method. For example, we obtained a sintered body with the density of 89% and the grain sizes of 250 ~ 400 nm at sintering temperature of 1,250 ℃. When served as a target of RF sputtering device at the substrate temperature of 600 ℃ and the gas composition condition of 80% Ar - 20% O2, it was found that this sintered body can produce a GDC thin film with high crystallinity, which normally leads to high electrical conductivity. For the as-deposited GDC thin films with thickness of ~1 ㎛, the electrical conductivity of 10-2 S/cm was measured and this is allowable value for a thin film electrolyte of IT-SOFC. From these theoretical and experimental result, it was concluded that RF thermal plasmas can provide a fast and facile route to the synthesis of ceria based nano-composite, such as Ni-CeO2 nano-catalyst and GDC electrolyte nano powders for IT-SOFC applications.

목차

1. 서 론 1
1.1 연구 배경 1
1.2 연구 목적 및 연구 내용 10
2. 이론적 배경 14
2.1 중저온형 고체산화물 연료전지 연료개질용 Ni-CeO2 나노촉매 14
2.2 중저온형 고체산화물 연료전지 전해질용 GDC(Gd doped CeO2)나노분말 17
2.3 고주파 유도결합 열플라즈마 이론 21
2.3.1 수치해석 코드 및 모델 21
2.3.2 지배 방정식 및 경계조건 23
2.3.3 고주파 유도결합 열플라즈마와 Ni, CeO2 및 Gd2O3 입자 간 상호작용 예측 32
3. 고주파 유도결합 열플라즈마 실험장치 및 운전조건 41
3.1 60 kVA급 고주파 유도결합 플라즈마 토치 시스템 및 플라즈마 운전조건 41
3.2 200 kVA급 고주파 유도결합 플라즈마 토치 시스템 및 플라즈마 운전조건 44
4. 고주파 유도결합 열플라즈마를 이용한 연료개질용 Ni-CeO2 나노촉매 합성 및 특성 평가 47
4.1 Ni-CeO2 혼합 선구체의 제조 47
4.2 합성된 나노분말의 복합소재 특성 평가 52
4.2.1 분말 특성 평가 방법 52
4.2.2 형상 및 성분 분포 특성 분석 및 평가 52
4.2.3 결정구조 특성 분석 및 평가 57
4.2.4 H2-TPR(Temperature Programmed Reduction) 특성분석 및 평가 60
4.3 합성된 나노분말의 연료개질 촉매 특성 평가 63
4.3.1 연료 개질 촉매 특성 평가 방법 63
4.3.2 온도에 따른 부분산화 촉매 성능 시험 및 평가 65
4.3.3 시간에 따른 부분산화 촉매 안정성 시험 및 평가 68
4.4 실험결과 요약 73
5. 고주파 유도결합 열플라즈마를 이용한 전해질용 GDC 나노분말 합성 및 특성 평가 75
5.1 Gd2O3-CeO2 혼합 선구체의 제조 75
5.2 합성된 나노복합분말의 복합소재 특성 평가 79
5.2.1 분말 특성 평가 방법 79
5.2.2 형상 및 성분 분포 특성 분석 및 평가 80
5.2.3 결정구조 특성 분석 및 평가 86
5.3 합성된 나노분말의 소결 및 소결체 특성 89
5.3.1 소결 특성 분석 방법 89
5.3.2 소결 특성 분석 90
5.3.3 소결체 미세구조 및 밀도 특성 분석 92
5.4 합성된 나노분말의 전해질 박막 특성 평가 96
5.4.1 GDC 전해질 박막 제조 공정 조건 96
5.4.2 GDC 전해질 박막 제조 공정 최적화 97
5.4.3 GDC 전해질 박막 전기적 특성 분석 및 평가 106
5.5 실험결과 요약 111
6. 결 론 112
참고문헌 114
요약문 120
감사의 글 124

최근 본 자료

전체보기

댓글(0)

0