지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
이용수19
제 1 장 서 론제 2 장 이론적 배경2. 1. 라만 분광법의 원리2. 2. 표면 플라즈몬 공명 현상(Surface Plasmon Resonance)2. 3. 표면 증강 라만 산란(Surface-enhanced Raman scattering)2. 4. 금속-유기 구조체(Metal-organic framework, MOF)제 3 장 실험방법3. 1. 실리카 코어 금 위성입자 (SiO2@Au)의 합성 및 응용에 관한 연구3. 1. 1 SiO2@Au 나노입자의 합성3. 1. 2. 라만 신호 측정3. 2. Ag@SiO2@Au 나노입자의 합성 및 응용에 관한 연구3. 2. 1 Ag@SiO2@Au 나노입자의 합성3. 2. 2. 라만 신호 측정3. 3. 금속 나노입자가 고밀도로 분산된 다공성 금속-유기 구조체의 합성 및 응용에 관한 연구3. 3. 1. ZIF-8 입자의 합성3. 3. 2. Ag 나노입자의 합성3. 3. 3. ZIF-8 입자 내부에 Ag 나노입자 도입3. 3. 4. 흡착량 측정3. 4. 분석방법제 4 장 실험결과4. 1. 실리카 코어 금 위성입자 (SiO2@Au)의 합성 및 응용에 관한 연구4. 1. 1. SiO2@Au 나노입자 합성 및 구조 분석4. 1. 2. 반응 시간에 따른 입자 합성4. 1. 3. Au 입자 크기 별 흡광도 분석 및 라만 증강 분석4. 1. 4. 라만 신호 검출 한계 (Limit of detection, LOD) 측정4. 2. Ag@SiO2@Au 나노입자의 합성 및 응용에 관한 연구4. 2. 1. Ag@SiO2@Au 나노입자 합성 및 구조 분석4. 2. 2. Au 입자 크기 별 흡광도 분석 및 라만 증강 분석4. 2. 3. 입자 구조 별 흡광도 분석 및 라만 증강 분석4. 2. 4. SiO2층 두께 별 흡광도 분석 및 라만 증랑 분석4. 2. 5. 라만 신호 검출 한계 (Limit of detection, LOD) 측정4. 3. 금속 나노입자가 고밀도로 분산된 다공성 금속-유기 구조체의 합성 및 응용에 관한 연구4. 3. 1. Ag@ZIF-8의 합성 및 흡광도 분석4. 3. 2. Ag@ZIF-8 입자의 결정 및 기공 구조 분석4. 3. 3. Ag 나노입자의 분산에 따른 흡광도 및 라만 신호 증강4. 3. 4. 라만 신호 검출 한계 (Limit of detection, LOD) 측정제 5 장 결론참고문헌Abstract-List of TablesTable 1. BET values for pure ZIF-8 and Ag@ZIF-8 crystals.-List of figuresFigure 1. Illustration of Rayleigh and Raman scattering.Figure 2. Quantum mechanical Raman scattering process.Figure 3. Schematic diagram of surface plasmon propagating along a metal ? dielectric interface.Figure 4. Illustration of propagation plasmons (a) and localized surface plasmon resonance(LSPR) (b).Figure 5. Comprehension of Surface-enhanced Raman spectroscopy using electromagnetic enhancement effect.Figure 6. Illustration of synthesis and crystal structure of MIL-101.Figure 7. A schematic illustration of the synthesis of silica-core gold-satellite nanoparticles (SGNPs).Figure 8. TEM images of as-prepared SGNPs under various reaction conditions: (a) 0, (b) 3, (c) 5, (d) 10 min reduction at 80℃ and prepared by using (f) only glucose solution and (h) only growth solution with seed solution at 80℃ for 10 min.Figure 9. TEM images of SGNPs prepared by various growth solution concentrations; (a) 1mL, (b) 2.5 mL and (c) 3 mL under the constant amount of glucose. The others synthesized by various amount of reductant (d) 1.5 mL (e) 3 mL of 5 mM glucose solution under the contant amount of growth solution and (f) the nanoparticles prepared with 4mL glucose solution. (g) Their corresponding UV spectra.Figure 10. SEM images of SERS substrates prepared by using the SGNPs showing maximum absorption peak (λmax) at (a) 577 nm, (b) 607 nm, (c) 636 nm and (d) 663 nm and their corresponding SERS spectra of benzenethiol molecules.Figure 11. Intensity of the Raman peak at 1507 cm-1 of various concentrated R6G molecules(log C) with or without SGNPs substrates.Figure 12. Schematic illustration and transmission electron microscope image of the synthesis of Ag@SiO2@Au NPs.Figure 13. Transmission electron microscope image of Ag@SiO2@Au NPs prepared by various growth solution concentration; (a) seed nanoparticle solution, (b) 3 mL (R1), (c) 6mL (R2), (d) 11 mL (R3) of growth solution under the constant of reductant and (e) their corresponding UV-vis absorbance.Figure 14. SERS spectra of benzenethiol resulting from Ag NPs, Ag@SiO2, Ag@SiO2,@Au seed and Ag@SiO2,@AuNPs after Au reduction (R1, R2, R3).Figure 15. Transmission electron microscope image of (a) SiO2@Au NPs, (b) Ag@SiO2@Au NPs prepared by the constant reduction condition, (c) their corresponding UV-vis absorbance.Figure 16. SERS spectra of benzenethiol resulting from SiO2@Au NPs, Ag@SiO2@Au NPs.Figure 17. Transmission electron microscope image of Ag@SiO2@Au NPs prepared by (a) 5 nm, (b) 8 nm and (c) 15 nm thickness SiO2 shell with the constant reduction condition and (d) their corresponding UV-vis absorbance.Figure 18. SERS spectra of benzenethiol resulting from Ag@SiO2@Au NPs prepared by 5 nm, 8 nm and 15 nm thickness SiO2 shell with the constant reduction condition.Figure 19. SERS intensities at 1507cm-1 as a function of the concentration (log C) of R6G molecules adsorbed from Ag NPs, Ag@SiO2@Au NPs.Figure 20. Schematic diagram of the fabrication of metal nanoparticles embedded zeolitic imidazolate framework-8 (ZIF-8) (a) and their transmission electron microscope images; pure ZIF-8 (b) metal NPs embedded ZIF-8 ⓒ.Figure 21. Transmission electron microscope images of (a) pure ZIF-8, (b) hybrid nanoparticles prepared by encapsulating (b) PVP stabilized AgNP (W-AgNP) (W-Ag@ZIF-8), (c) PVP capped AgNP with free PVP ligands (A-AgNP) (A-Ag@ZIF-8) and (d) their corresponding UV-vis absorbance.Figure 22. XRD patterns of pure ZIF-8 and ZIF-8 composites incorporated with W-AgNPs and A-AgNPs.Figure 23. N2 sorption isotherm (a), pore size distribution (b) of pure ZIF-8 and ZIF-8 composites incorporated with W-AgNPs and A-AgNPs.Figure 24. Transmission electron microscope images of W-Ag@ZIF-8 under different synthetic conditions for the control of spatial distribution of encapsulated AgNPs within ZIF-8. W-Ag@ZIF-8 prepared by changing adding time of Ag NPs and precursor concentrations. (e) Their corresponding UV-vis absorbance.Figure 25. SERS spectra of Ag NPs with phthalic acid and Ag@ZIF-8 composites adsorbed phthalic acid.Figure 26. SERS intensities at 1039cm-1 as a function of the concentration (M) of phthalic acid molecules adsorbed from Ag NPs, pure ZIF-8, Ag@ZIF-8.
0