메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

구준영 (부산대학교, 부산대학교 대학원)

지도교수
김정석
발행연도
2016
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
Recently, a lot of researches for lightweight materials and parts have been conducted to improve fuel efficiency in industry of transportation equipment such as aerospace and automotive. Especially, in order to reduce carbon-oxide gases and to improve fuel efficiency light-weighted metal parts have been applied to transportation equipment.
Aluminum alloys (Al-alloys) having high specific strength are effective for structural parts. So, Al-alloys have been used for structural frame parts related to safety of aircraft and automobiles. Also Al-alloys are applied to portable device demanding strength such as laptop computers and mobile phones for weight reduction. Especially Al-alloys are applied to parts having a thin-wall structure. A thin-wall structure is easy to be deformed by cutting forces, vibrations, and heat.
Chatter vibration generated by inappropriate cutting conditions makes surface integrity worse in thin-wall milling process of Al-alloys. Thus it is important to conduct continuous monitoring for diagnosis and avoidance of chatter vibration to ensure a machining quality in thin-wall milling process of Al-alloys.
The objective of this study is to analyze machining characteristics and to make a machining condition monitoring system to detect chatter vibration in thin-wall milling process of Al-alloy(Al7075-T651). For this purpose, thin-wall milling experiments are conducted to analyze the characteristics of machining process. Machining deformation and vibration characteristics of thin-wall milling process are identified by machined surface analysis and time-domain and frequency-domain analysis of cutting signals acquired by accelerometer, microphone, and AE sensor.
In addition, milling experiments are conducted to figure out detailed characteristics of chatter vibration which cause deterioration of surface integrity in thin-wall milling process of Al-alloy. Changes in cutting signals and surface conditions according to spindle speed and axial depth of cut are analyzed. Signal processing is conducted for extracting cutting signal characteristics when chatter vibration occurs. The limits of depth of cut that chatter vibration generates figures out by analysis of acceleration RMS, SPL, peak-count by DWT, and surface conditions. Also features of FFT graphs and frequency bands having high peak and high density when chatter vibration occurs are found out by FFT analysis.
Finally the monitoring algorithm applying artificial neural network(ANN) learned by the cutting signal patterns and fuzzy inference method using acceleration RMS and SPL is created to conduct the monitoring for diagnosis of chatter vibration in real-time. Patterning of cutting signals is conducted by using wavelet packet transform and vector normalizing to use for input pattern of pattern recognition algorithm by ANN. This suggested monitoring scheme can be applied to machining process effectively for detection of abnormal machining conditions such as chatter vibration.

목차

Nomenclature ⅲ
List of Tables ⅴ
List of Figures ⅵ
제 1 장 서 론 1
1.1 연구배경 1
1.2 연구동향 4
1.3 연구목적 및 내용 9
제 2 장 알루미늄 합금의 얇은 벽 밀링가공시 가공특성분석 11
2.1 알루미늄 합금의 얇은 벽 밀링가공시 가공변형특성 13
2.1.1 실험장치 및 방법 13
2.1.2 실험결과 및 고찰 16
2.2 알루미늄 합금의 얇은 벽 밀링가공시 진동특성 28
2.2.1 실험장치 구성 28
2.2.2 실험방법 29
2.2.3 실험결과 및 고찰 32
제 3 장 알루미늄 합금의 밀링가공에서 채터진동특성 48
3.1 실험장치 및 방법 51
3.2 실험결과 및 고찰 54
3.2.1 가속도와 음향신호특성 54
3.2.2 가공표면특성 87
3.3 채터안정선도 92
3.3.1 채터안정도 모델 - Zero-order chatter stability model 92
3.3.2 주파수응답분석 및 절삭력계수 97
3.3.3 채터안정선도 비교분석 102
제 4 장 알루미늄 합금의 얇은 벽 밀링가공시 채터진동감지를 위한 실시간 채터진동 감시시스템 105
4.1 절삭신호의 패턴화 107
4.2 인공신경망을 활용한 채터진동감지 112
4.2.1 역전파 인공신경망 112
4.2.2 채터진동 패턴인식 알고리즘 117
4.3 퍼지추론기법을 활용한 채터진동감지 122
4.4 실시간 채터진동 감시시스템 128
제 5 장 결 론 132
References 135
Abstract 144

최근 본 자료

전체보기

댓글(0)

0