메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

박은혜 (부산대학교, 부산대학교 대학원)

지도교수
황도훈
발행연도
2016
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Organic photovoltaic cells (OPVs) that produce electricity from sunlight are remarkable clean and renewable energy sources. OPVs also have many advantages such as their light weight, flexibility, and processability. Due to these advantages, significant effort has been devoted to OPV research. Recently, the power conversion efficiency (PCE) of several OPVs has been improved exceeding 10%. The effects to increase the PCE of OPVs include the application of donor-acceptor (D?A) type copolymer that reduces the band-gap energies of semiconducting donor polymers. Benzo[1,2-b:4,5-b'']dithiophene (BDT) is a popular donor building block for D?A copolymers. Also, the introduction of heteroatoms has attracted significant research interest to control the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels.
In this study, we designed and synthesized two conjugated semiconducting copolymers consisting of 4,7-bis(4-(2-ethylhexyl)-2-thiophene)-2,1,3-benzothiadiazole (DTBT) and benzo[1,2-b:4,5-b’]dithiophene with 5-(2-ethylhexyl)-2,2''-bithiophene (BDTBT) or 5-(2-ethylhexylthio)-2,2''-bithiophene (BDTBT-S) as a new donor building block for D?A type copolymers for OPVs. The alkylthio-substituted bithienyl group was introduced into BDT in order to tune the HOMO energy level and also extend the conjugation length of the resulting 2D-conjugated polymer for enhanced light absorption. Alkylthio-substituted PBDTBT-S-DTBT showed a higher hole mobility and lower highest HOMO energy level (by 0.08 eV) than the corresponding alkyl-substituted PBDTBT-DTBT. An OPV fabricated using PBDTBT-S-DTBT showed higher VOC and JSC values of 0.83 V and 7.56 mA/cm2, respectively, than those of a device fabricated using PBDTBT-DTBT (0.74 V) leading to a power conversion efficiency of 2.05% under AM 1.5G 100 mW/cm2 illumination.
Secondly, 5,8-bis(5-bromothiophen-2-yl)-2,3-bis(4-(octylthio)phenyl)quinoxaline (DTQx-S) and
5,8-bis(5-bromothiophen-2-yl)-6,7-difluoro-2,3-bis(4-(octylthio)phenyl)quinoxaline (DFDTQx-S) were synthesized and copolymerized with benzo[1,2-b:4,5-b’]dithiophene containing 2-(2-ethylhexyl)thiophene and 2-(2-ethylhexylthio)thiophene, respectively. We compared the synthesized polymers with PBDTT-DFDTQx-O and PBDTT-S-DFDTQx-O. The polymers as thin film induced a broad absorption from 300 to 900nm. The optical band gap energies of the polymers were 1.74-1.80 eV calculated from the UV-visible absorption edge of the polymer films. All polymers showed deep HOMO energy level less than -5.45 eV. Especially, PBDTT-S-DFDTQx-S introduced sulfur and fluorine atoms in the polymeric backbone indicated the deepest HOMO energy level as -5.62 eV. These synthesized polymers could expect to have high VOC and JSC values and enhance the efficiency of OPV, consequently.

목차

List of figures 4
List of tables 5
List of schemes 6
1. Introduction
1-1. 유기 태양전지의 소개 7
1-2. 유기 태양전지 구조와 원리 7
1-3. 유기 태양전지 효율 9
1-4. 유기 태양전지 재료의 연구 동향 10
1-5. Reference 13
2. Result and discussion 14
I. New Low Band Gap 2D-Conjugated Polymer with Alkylthiobithiophene-Substituted Benzodithiophene for Organic Photovoltaic Cells 14
I-1. Abstract 14
I-2. Introduction 15
I-3. Experimental details 16
I-3-1. Measurements 16
I-3-2. Materials 16
I-3-3. 유기 박막트랜지스터 제작 17
I-3-4. 유기 태양전지 제작 17
I-3-5. 단량체 합성 18
I-3-6. 고분자 합성 21
I-4. Result and discussion 23
I-4-1. 고분자의 물리적 특성 23
I-4-2. 고분자의 광학적, 전기화학적 특성 23
I-4-3. 고분자의 Density Functional Theory (DFT) 계산 26
I-4-4. 고분자의 유기 박막트랜지스터 특성 29
I-4-5. 고분자의 광전기력 특성 31
I-5. Conclusions 34
I-6. Reference 34
II. Effect of Alkylthio-Substituted Electron-Donating and Electron-Withdrawing Units on the Chemical Properties 36
II-1. Abstract 36
II-2. Introduction 36
II-3. Experimental details 37
II-3-1. Measurements 37
II-3-2. Materials 38
II-3-3. 단량체 합성 39
II-3-4. 고분자 합성 43
II-4. Result and discussion 47
II-4-1. 고분자의 물리적 특성 47
II-4-2. 고분자의 광학적, 전기화학적 특성 49
II-5. Conclusions 53
II-6. Reference 54
3. Summary in Korean 55

최근 본 자료

전체보기

댓글(0)

0