메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

노현호 (서울대학교, 서울대학교 대학원)

발행연도
2015
저작권
서울대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
We study geometry of moduli space of holomorphic maps from curves to projective scheme through various compactifications. Most famous one is moduli
space of stable maps introduced by Kontsevich. When genus is one and target space is projective space, main component of moduli space of stable maps is nonsingular. Vakil and Zinger found some desingularization via modular blow ups. Kim introduced log stable maps with target expansions which gives another desingularization of moduli space of stable maps. We compare theses two desingularization. Also, Gross-Seibert and Abramovich-Chen defined logarithmic stable maps without target expansions. Using these moduli space, one can define log Gromov-Witten invariants. We prove the degeneration formula of log Gromov-Witten invariants.

목차

Contents
Abstract i
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Comparison of two desingularizations of moduli space of stable maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 An example of degeneration . . . . . . . . . . . . . . . . . 10
2.4 The description of fiber in the moduli space of elliptic admissible stable maps . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 The case of the degree 2 . . . . . . . . . . . . . . . . . . . 17
2.6 The case of the degree 3 . . . . . . . . . . . . . . . .. . . . 19
3 Degeneration of log stable maps . . . . . . . . . . . . . . . 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Basic/Minimal stable log maps . . . . . . . . . . . . . . . 29
3.3 Simple degenerations . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Proof of Theorem 3.1.1 . . . . . . . . . . . . . .. . . . . . . . 50
Abstract (in Korean) i
Acknowledgement (in Korean) ii

최근 본 자료

전체보기

댓글(0)

0