메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

한정혜 (공주대학교, 공주대학교 대학원)

지도교수
이선하
발행연도
2015
저작권
공주대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In South Korea, the increasing number of cars has caused various traffic issues such as frequent road congestion and air pollution. To solve these problems, local governments have attempted to manage traffic based on intelligent transport system (ITS) and advanced traffic management systems (ATMS). However, the system was built simply by expanding the infrastructure and, eventually, it decreased efficiency of traffic management. For fundamental solution to the problems, it is necessary to find a way to maximize efficiency of existing traffic management. Among various traffic issues, signal operation is one of the most important factors that influence road congestion and the conventional signal operation did not take into account various traffic patterns and, therefore, resulted in low efficiency as, for instance, a small traffic flow receives a long green and causes another traffic delays. Flow in cities is related to various traffic patterns as particular groups of fleets are formed in different times, and it seems necessary to design a signal operation system for different situations.
This study was conducted to design a signal control system to improve efficiency in road operation on the network level by classifying situational traffic patterns based on a short-term traffic prognosis data and enabling fluid signal operation.
For situational signal control based on traffic prognosis data, traffic patterns were established in subject areas based on traffic demand forecasting models of local governments and these patterns were classified into five traffic situations (inactive flow, normal flow, crowded flow-entering the city, crowded flow-in the city, and incident situation flow). Also, main arterial were selected and the relevant directional design hourly volume (DDHV) that need to be considered as priority in signal operation was reviewed based on the upward and downward traffic volumes and V/C. And then, a critical intersection (CI) were selected as they are the basis of optimization and interlocking of signalized intersections within the selected arterial. Local optimization was performed on the CI to calculate the optimal cycle and phase and set the main sub-area (SA). By performing network optimization of situational networks for the interlocked group, frame signals were created for the aforementioned five traffic situations (signal program: S0, S1, S2, S3, S4, S5). The frame signals determine detector data and existing maintenance time conditions based on signal convert program, and, if all relevant conditions are met, change to appropriate signals according to the priority. Here, the signal convert program was modularized by using a COM interface named Visual Basic Application.
In this study, which classified traffic situations based on short-term traffic prognosis data to build a system to control signals, frame signals were set by optimizing network for five different traffic situations, and the frame signal of each situation enabled understanding effect of DDHV delay improvement and also, based on the detector data, changing signals according to the situation.

목차

Ⅰ. 서론 1
1. 연구의 배경 및 목적 1
2. 주요 연구 내용 및 절차 2
1) 연구 내용 2
2) 연구수행 절차 4
Ⅱ. 선행연구 고찰 5
1. 선행사례 조사 5
1) SCOOT(영국) 5
2) SCATS(호주) 7
3) OPAC(미국) 7
2. 이론적 고찰 9
1) 정주기식 신호제어 9
2) 감응식 신호제어 9
3) 연동화 신호제어 11
3. 연구 시사점 도출 16
1) 선행사례 조사 16
2) 이론적 고찰 16
3) 기존 연구와의 차별성 17
Ⅲ. 예측자료 기반 네트워크 신호제어 방안 18
1. 단기적 교통상황 예측 18
1) 현재 교통상황 분석 18
2) 장래(단기) 교통상황 예측 19
2. 신호최적화 및 연동화 20
1) 개별 교차로 최적화 기법(Local Optimization) 20
2) 네트워크 최적화 기법(Network Optimization) 21
3. Frame Signal 설정 23
4. 신호변환 프로그램 23
1) 신호변환 Matrix 23
2) 신호변환 프로그램 설계 24
Ⅳ. Case Study 25
1. 대상지 선정 25
1) 대상지 일반 현황 25
2) 대상지 교통여건 26
2. 단기적 교통상황 예측 28
1) 단기적 교통상황 예측 결과 28
2) 신호제어 주요 교통축 선정 31
3) 중요교차로(CI : Critical Intersection) 선정 33
3. 신호최적화 및 연동화 35
1) 개별 교차로 최적화 기법(Local Optimization) 35
2) 네트워크 최적화 기법(Network Optimization) 43
4. 효과분석 46
1) 지체시간 47
2) 통행시간 48
3) 통행속도 48
5. Frame Signal 49
6. 신호변환 프로그램 53
1) 신호변환 Matrix 53
2) 신호변환 프로그램 설계 58
Ⅴ. 결론 및 향후 연구방향 62
1. 연구의 결론 62
2. 연구의 한계 및 향후 연구과제 64
Ⅵ. 참고문헌 65

최근 본 자료

전체보기

댓글(0)

0