메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김지숙 (부산대학교, 부산대학교 대학원)

지도교수
이성호
발행연도
2015
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수14

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The advantages of the system dynamics that handle dynamic variables have been verified in diverse fields for a long period of time. However, as there are many restrictions in incorporating spatial variables into the model, it has had a limit in handling feedback between time and space. In this study, in order to improve such a limit, spatial variables were handled as individual variables in system dynamics and efforts were made to find a way for the dynamic change process of such variables to mutually link with GIS. Accordingly, a time and space integrated model was built so that the variables of GIS drawn using the spatial analysis could be combined again and analyzed in GIS after going through dynamic modeling inside system dynamics.
The model built was used to carry out a simulation on the inundation effect on Haeundae-gu of Busan Metropolitan City resulting from the sea level rise scenario of IPCC and storm surge, which is the worst case. Through this, the flooded area and population by unit of time until 2100 were predicted. Also, the result and significance of each alternative was reviewed improving the model by establishing alternative scenarios of protection, accommodation, and retreat as plans of reaction to rise of sea level.
The dynamic change in the variables by time flow could be looked into by enabling spatial variables to be handled in system dynamics using the time and space integrated model built in this study, and the spatial characteristics could also be examined by combining this with the GIS environment again. The advantage that temporal flow can be reflected has a great significance in when the process up to the target point in time can be looked into rather than when the result at the target point in time can be simply calculated. That is, the combination of system dynamics and GIS has advantages of how the diverse variables change until the target year can be traced and, accordingly, not only the result but also the process of spatial change can be examined by calculating the value of change process at each set point in time.
From the viewpoint of system dynamics, the interaction of spatial and aspatial variables could be reflected by handling within the model the spatial variables which used to be difficult to handle in the past, and visualization at each set point in time and target point in time and its potential as basic data for other spatial analyses could be exhibited by interlinking it with GIS. Moreover, the idea that experiments with diverse policies are flexibly carried out by modifying the variables inside the model can also be said to be an advantage of system dynamics; that effect could be visually confirmed by interlinking it with GIS.
The model built in this study has been simplified and generalized putting the focus on integration of system dynamics and GIS and, if diverse variables and also their dynamics are incorporated in the future, it will become a foothold for enhancement of modeling accuracy and prediction of the effect of policy enforcement. Also, the combination of the advantages of system dynamics that dynamic changes in the variables with time can be checked, and appropriate alternatives that can be groped for through improvement of the model with GIS as a tool which supports decision-making through spatial analyses and visualization, is expected to exercise a synergy effect in diverse fields.
In particular, it is presumed to be a foothold for solving the problems which are becoming increasingly difficult to predict due to increase in uncertainty and complexity, and in which not only the process of temporal change, but also the aspect of spatial change is importantly handled, that is to say, by gathering the opinions of diverse experts and establishing the model structure also in the interdisciplinary fields such as decline in growth of cities, traffic problems, environmental problems, and the effect of climate change.

목차

제1장 서론 1
제1절 연구의 배경 및 목적 1
제2절 연구의 내용 및 방법 3
제2장 이론적 논의 및 선행연구 고찰 7
제1절 시공간 통합모델 7
1. GIS 환경에서의 시공간 모델링 기법 7
2. 동태성을 다루는 시스템 다이내믹스 12
3. 시스템 다이내믹스와 GIS를 결합한 시공간 통합모델 25
제2절 해수면 상승 영향에 관한 논의 35
1. 기후변화로 인한 해수면 상승의 영향 및 적응 방안 35
2. 시스템적 접근의 필요성 42
제3장 시공간 통합모델의 연구방법론 설정 48
제1절 대상지 설정 및 데이터 구축 48
1. 대상지 설정 48
2. 데이터 구축 49
제2절 기본 모델 설계 57
제4장 해수면 상승 영향 시뮬레이션 64
제1절 해수면 상승 시나리오에 따른 시뮬레이션 64
1. 해수면 상승 시나리오 설정 64
2. 시뮬레이션 결과 고찰 65
제2절 해수면 상승과 태풍 해일고를 반영한 시뮬레이션 68
1. 태풍 해일고 설정 68
2. 시뮬레이션 결과 고찰 70
제3절 모델의 민감도 분석 73
제4절 소결 75
제5장 정책 모의에 따른 모델 개선 80
제1절 해수면 상승 정책대안 Ⅰ 80
1. 방어(Protection) 시나리오 설정 80
2. 시뮬레이션 결과 고찰 82
제2절 해수면 상승 정책대안 Ⅱ 85
1. 순응(Accommodation) 시나리오 설정 85
2. 시뮬레이션 결과 고찰 86
제3절 해수면 상승 정책대안 Ⅲ 88
1. 후퇴(Retreat) 시나리오 설정 88
2. 시뮬레이션 결과 고찰 92
제4절 소결 94
제6장 결론 97
참 고 문 헌 100
부록 111
Abstract 134

최근 본 자료

전체보기

댓글(0)

0