메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김강석 (부산대학교, 부산대학교 대학원)

지도교수
이득우
발행연도
2015
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수13

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Ball and roller bearings are kinds of rolling bearing and commonly used machine elements. They are generally used to support rotating motion of shafts in simple commercial devices such as bicycles, in-line skates, and electric motors as well as in complex mechanisms such as aircraft gas turbines, wind mills, power transmissions and main spindle of machine tools.
In rotating machine system such as a main spindle of machine tools, the rigidity and the positional accuracy of the bearing are very important. Operating characteristics of the bearing significantly affects to the performance of machine tools, so it is very important to select the proper bearing at the design stage of machine tools. For the appropriate selection of the bearing for machine tools, it must be considered the bearing load capacity, the driving speed and driving conditions such as temperature. In addition, for the long-term use of the bearing without damage, bearing characteristics must be well identified and the appropriate lubricant and the lubrication conditions have to be applied.
Ball bearings reduce friction during the rotation of the radial and axial direction to support the load. However, the heat generation by friction, the wear, and the power loss are occurred because of the relative motion between the metal materials. Internal friction in the bearing leads to a temperature rise. If the heat generated from inside the bearing is not adequately removed, the system temperature will be continuously increased. When the lubricant is deteriorated due to the temperature rise, the bearing premature breakage will occurs in the end. In addition, the heat generation caused by the friction of the bearing is the main factor of interference for the speedup of the main spindle in machine tools. And it is an important issue in terms of the energy efficiency as like the bearing friction loss at initial operation (starting torque) and the increase of the friction loss due to the driving speed increases (driving torque). Thus, the study on frictional losses and the heat generation caused by the friction of the bearing is extremely important.
Most studies on the calculation and the measurement of the frictional torque are limited to the single bearing behavior, so there is a gap between studies and actual load and operating conditions of the bearing in the mechanical system. In particular, for the bearing supporting the main spindle of machine tools, the increased rigidity due to the preload at the mounting process give a big impact to the performance and accuracy of the machine, therefore it is necessary to study on the frictional torque calculation and the measurement in consideration with actual operating conditions for the spindle system.
Here, we describe a method to estimate the frictional torque in bearings using an empirical formula developed using a method based on bearing analysis tool and the measured frictional torque in a spindle system. The frictional loss was estimated by the obtained frictional torque, through which heat generation characteristics would be predicted. Considering the heat generated by the friction on bearings a thermal analysis has been done with the modeling of the entire system considering convection and conduction conditions. As a result of the analysis the temperature distribution of the entire system including bearings has been obtained. The actual spindle system was built and then the frictional torque and the bearing temperature were measured in the experiment. Results of finite element analysis were compared to the measured temperature by the actual experiment for the verifying the validity of the FEA.

목차

1. 서 론 1
1.1 연구의 필요성 1
1.2 연구 동향 5
1.3 연구목적 및 내용 7
2. 구름 베어링의 마찰 16
2.1 구름 베어링의 마찰 해석에 관한 연구 16
2.1.1 Stribeck의 계산식 16
2.1.2 Palmgren의 계산식 16
2.1.3 Kispert의 계산식 18
2.1.4 교반손실 19
2.1.5 SKF 방식 19
2.1.6 그 외의 시도 20
2.2 카탈로그 방법에 의한 마찰토크의 계산 21
2.3 Bearinx에 의한 마찰토크의 계산 22
2.3.1 구름 및 미끄럼 마찰 22
2.3.2 교반손실과 고갈현상 24
3. 해석 및 시험방법 39
3.1 마찰토크의 시뮬레이션 39
3.1.1 Bearinx 모델 39
3.1.2 마찰토크에 대한 Bearinx 해석결과 40
3.2 베어링의 토크 측정 및 발열특성 평가시험 42
3.2.1 운전조건에 따른 토크 및 발열량 측정시스템 제작 42
3.2.2 운전조건에 따른 토크 및 발열량의 측정과 평가 45
3.2.3 시험결과 및 해석결과와의 비교 46
4. 실험식 유도 74
4.1 Harris의 마찰토크 계산식 74
4.1.1 부하하중에 의한 마찰토크 74
4.1.2 윤활제 점성마찰에 의한 마찰토크 75
4.1.3 전체 마찰토크 76
4.2 카탈로그 방법을 이용한 마찰토크 계산식 76
4.3 실험식 유도 78
4.4 최종 실험식 유도 81
4.5 실험식을 이용한 베어링 토크계산 방법에 대한 검증 82
5. 베어링 온도해석 105
5.1 마찰과 발열 106
5.2 유한요소 해석 107
5.3 열 전달 메커니즘 108
5.4 경계조건 108
5.4.1 대류 108
5.4.2 접촉조인트 109
5.5 결과 109
5.6 3D 모델을 이용한 유한요소 해석 110
5.6.1 경계 및 하중조건 110
5.6.2 해석결과 111
6. 결 론 124

최근 본 자료

전체보기

댓글(0)

0