지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
이용수3
List of tables and figures제 1 장 서 론1. 1 연구배경 ????????????????????????????????????????????????????????????????????? 11. 2 연구목적 및 내용 ????????????????????????????????????????????????????????? 4참고문헌 ??????????????????????????????????????????????????????????????????????????? 7제 2 장 연주기 설계의 이론적 배경 92.1 Roll Geometry 설계 고려사항 ??????????????????????????????????????????? 112.1.1 주편 품질 측면 ??????????????????????????????????????????????????????? 112.1.2 제작성 및 경제성 측면 ????????????????????????????????????????????? 132.2 Roll Geometry 설계 이론적 배경 ??????????????????????????????????????? 162.2.1 미응고 길이(Metallurgical Length) ???????????????????????????????? 162.2.2 Roll Geometry ??????????????????????????????????????????????????????????? 182.2.3 2차 냉각대 냉각조건 ????????????????????????????????????????????????? 252.2.4 롤 처짐 및 응력과 인발력 ???????????????????????????????????????? 282.3 Roll Geometry 개념설계 ??????????????????????????????????????????????????? 382.3.1 Roll Geometry 설계 절차 ???????????????????????????????????????????? 382.3.2 Roll Geometry 설계 개념 ???????????????????????????????????????????? 362.3.3 주편 해석 ??????????????????????????????????????????????????????????????? 482.3.4 Roll Geometry 설계결과???????????????????????????????????????????????참고문헌 ????????????????????????????????????????????????????????????????????????? 5051제 3 장 Mold Oscillator의 설계기술 663.1 Mold Oscillator 조업 조건에 따른 설계 ?????????????????????????????? 663.1.1 Mold 설계 개요 ???????????????????????????????????????????????????????? 663.1.2 Oscillator 설계 개요 ?????????????????????????????????????????????????? 693.1.3 측면 지지 롤 초기조건 설정방안 ??????????????????????????????? 743.1.4 Soft Clamping 초기 조건 설정방안 ??????????????????????????????? 763.1.5 Mold Oscillation 하중 조건 및 운전 조건 계산 ??????????????? 803.1.6 Oscillator 제어 및 운전 방안 설계 ??????????????????????????????? 873.2 폭 가변 장치 운전 방안 및 실험 결과 ????????????????????????????? 923.2.1 Mold 제작 개요 ???????????????????????????????????????????????????????? 923.2.2 신일철 고속 폭 가변 방법 ???????????????????????????????????????? 933.2.3 폭 가변장치 제어기의 현장설치 실험 및 결과 ????????????? 943.2.4 시험연주기 적용 시험 ?????????????????????????????????????????????? 953.2.5 폭변경 시험결과 ??????????????????????????????????????????????????? 973.3 Mold Oscillator 운전 및 조업 결과 ???????????????????????????????????? 983.3.1 Oscillator 진동 오차 측정 결과 ??????????????????????????????????? 983.3.2 운전영역 결정 ????????????????????????????????????????????????????????? 1003.3.3 Oscillator 진동 마찰력 측정 및 분석 ???????????????????????????? 1003.3.4 조업조건에 따른 진동 패턴 분석 ??????????????????????????????? 1033.3.5 진동 패턴에 따른 주편 표면 품질 분석 ?????????????????????? 1043.3.6 진동 패턴에 따른 상대속도 평가 ?????????????????????? 106참고문헌 ??????????????????????????????????????????????????????????????????????????? 108제 4 장 Pilot Caster 공정 설계기술 1564.1 공정 설계 개요 ????????????????????????????????????????????????????????????? 1564.2 Strand 공정 설계 기술 ???????????????????????????????????????????????????? 1594.2.1 DSR 프로세스 기술 ?????????????????????????????????????????????????? 1594.2.2 DSR 기계 기술 ???????????????????????????????????????????????????????? 1614.3 경압하 해석 기술 ?????????????????????????????????????????????????????????? 1634.3.1 Eulerian 유한 요소 해석 기술 ????????????????????????????????????? 1634.3.2 Multi Roll 경압하 공정 해석 ??????????????????????????????????????? 1664.4 몰드 냉각능 설계 기술 ?????????????????????????????????????????????????? 1684.5 Strand 내에서의 응고 완료점 제어 ??????????????????????????????????? 1734.5.1 개요 ?????????????????????????????????????????????????????????????????????? 1734.5.2 열 전달 계수와 몰드 열 전달 보정 ???????????????????????????? 1754.5.3 표면온도 측정 결과와의 비교 및 보정 ???????????????????????? 1774.5.4 노즐 및 롤의 영향 평가 ??????????????????????????????????????????? 1784.5.5 주조 조건 변화시의 응고 완료점 변화 ???????????????????????? 180참고문헌 ??????????????????????????????????????????????????????????????????????????? 181제 5 장 Pilot caster의 가동결과 1995.1 Pilot caster의 성능 ?????????????????????????????????????????????????????????? 1995.1.1 최고 주조속도 ????????????????????????????????????????????????????????? 1995.1.2 주조속도의 제어 ?????????????????????????????????????????????????????? 2005.1.3 용강 토출량 ???????????????????????????????????????????????????????????? 2015.1.4 탕면 제어 ??????????????????????????????????????????????????????????????? 2025.1.5 Auto start 및 auto stop ???????????????????????????????????????????????? 2035.1.6 미응고 압하 ???????????????????????????????????????????????????????????? 2045.2 주편의 품질 ????????????????????????????????????????????????????????????????? 2075.2.1 주편의 두께 및 폭 ??????????????????????????????????????????????????? 2075.2.2 주편의 응고 조직 ???????????????????????????????????????????????????? 2075.2.3 성분편석 ???????????????????????????????????????????????????????????????? 2075.2.4 주편의 표면온도 ?????????????????????????????????????????????????????? 2085.2.5 조업조건에 따른 주편의 형상????????????????????????????????????? 209참고문헌 ??????????????????????????????????????????????????????????????????????????? 212제 6 장 결 론 230Abstracts 234List of Tables and FiguresTablesTable 2-1 Product mix of pilot casterTable 2-2 Maximum bending moment and force in the rollTable 2-3 Steel grade and chemical compositionTable 2-4 Solidification coefficient and unsolidification lengthTable 2-5 Strain rate change according to the number of bending rollTable 2-6 Strain rate change according to the number of unbending rollTable 2-7 Relation of average roll gap and the roll number of bending partTable 2-8 Relation of water and temperature in outlet of cooling zoneTable 3-1 Mold thickness of mold top and bottomTable 3-2 Top width and bottom width of moldTable 3-3 Taper of mold narrow face by steel groupTable 3.4 Criteria of Oscillating ErrorTable 3.5 Oscillation Mark shape data according to the casting conditionTable 3.6 Relative velocity in the low speed and high speed castingTable 4-1 Soft reduction process design schemaTable 4-2 Mold? High Speed Thin Slab CastersTable 4-3 Taper of wide face moldTable 4-4 Cooling condition of moldTable 4-5 Copper plate of moldTable 4-6 Heat flux of moldTable 4-7 Water rate in the 2nd cooling zoneFiguresFig. 1-1 Schematic drawing of pilot casterFig.1-2 3D drawing of pilot casterFig.1-3 Schematic drawing of conventional casterFig. 2-1 Caster typeFig. 2-2 Segment extractionFig. 2-3 Deformation of slab by ferrostatic pressure of molten steelFig. 2-4 Bulging and strain rate model by bulgingFig. 2-5 Caster radius change in the 1 point un/bending partFig. 2-6 Caster radius change in the multi-point un/bending partFig. 2-7 Schematic diagram of strain by roll misalignmentFig. 2-8 Allowable strain of slab according to the carbon contentFig. 2-9 Component force of slab weight acting to the roll by verticalityFig. 2-10 Distribution load type acting to the rollFig. 2-11 Design process of Roll GeometryFig. 2-12 Relation of vertical length and slab quality (Inclusions)Fig. 2-13 Relation of vertical length and slab quality (Blowholes)Fig. 2-14 Solidification shell thickness and temperature profile on castingFig. 2-15 Results of bulging calculation by the developed programFig. 2-16 Results of bulging calculation by the commercial programFig. 2-17 Results of strain calculation by the developed programFig. 2-18 Results of strain calculation by the commercial programFig. 2-19 Results of stress calculation by the developed programFig. 2-20 Strain and strain rate calculation by the commercial programFig. 2-21 Comparison of strain in the other caster (Algoma, Mini-mill, Pilot caster)Fig. 2-22 Layout of pilot caster (side view)Fig. 3-1 Taper of wideface moldFig. 3-2 Mold oscillator of pilot casterFig. 3-3 Foundation frameFig. 3-4 Intermediate standFig. 3-5 Base frameFig. 3-6 Oscillating frameFig. 3-7 Cassette frameFig. 3-8 Width adjustment mold (WAM)Fig. 3-9 MoldFig. 3-10 Soft clampFig. 3-11 Cylinder and rodFig. 3-12 Section drawing of cylinder and rodFig. 3-13 Schematic drawing of Base frame extractionFig. 3-14 Schematic drawing of Cassette extractionFig. 3-15 Schematic diagram of ferostatic forceFig. 3-16 Disk springFig. 3-17 Schematic diagram of soft clampingFig. 3-18 Load diagram of disk spring (100x51x7)Fig. 3-19 Load diagram of disk spring (100x51x5)Fig. 3-20 Dynamic simulation of mold oscillatorFig. 3-21 Flow rate of the reciprocating actionFig. 3-22 Operating WindowFig. 3-23 Waveform ProfileFig. 3-24 Velocity ProfileFig. 3-25 Schematic diagram of Negative Strip Time (Tn)Fig. 3-26 Parallel patternFig. 3-27 Stepwise patternFig. 3-28 Z-mode patternFig. 3-29 Schematic diagram of high speed motion of NSCFig. 3-30 Schematic diagram of the WAM controllerFig. 3-31 Comparison of velocity profileFig. 3-32 Modified profile for the physical applicationFig. 3-33 Off-line test results of WAMFig. 3-34 Parallel pattern test resultsFig. 3-35 Deformation force of narrow faceFig. 3-36 Parallel pattern testFig. 3-37 Stepwise pattern testFig. 3-38 Z mode pattern test(Taper gap 5mm)Fig. 3-39 Fast mode pattern test(Taper gap 2.5/0 mm)Fig. 3-40 Fast mode pattern test(Taper gap 5/-2 mm)Fig. 3-41 Comparison of force according to pattern typeFig. 3-42 Comparison of force by taper in Z modeFig. 3-43 Operating Window and oscillation patternFig. 3-44 Operating test of mold oscillatorFig. 3-45 Test stand for mold oscillatorFig. 3-46 Oscillating Error check methodFig. 3-47 Oscillating Position Error by stroke and frequencyFig. 3-48 Oscillating Error on WaveformFig. 3-49 Oscillating Error on AsymmetryFig. 3-50 Flow diagram of servo valve (Rexroth NS 16 model)Fig. 3-51 Test result of the operating windowFig. 3-52 Force by oscillating error on the Break-Out castingFig. 3-53(a) Friction force at the speed 2.5 mpm (LCR 20mm)Fig. 3-53(b) Friction force at speed 2.5 mpm (LCR 30mm)Fig. 3-54 Powder consumption at Asymmetry 50%Fig. 3-55 Powder consumption at Asymmetry 60%Fig. 3-56 Powder consumption at Asymmetry 70%Fig. 3-57 Negative Strip Distance according to stroke and asymmetryFig. 3-58 Negative Strip Ratio according to stroke and asymmetryFig. 3-59 Oscillation Mark Depth in Left Side of SlabFig. 3-60 Oscillation Mark Depth in Right Side of SlabFig. 3-61 Oscillation Mark Mean Depth of SlabFig. 3-62 OSM Hook Shape in Cast Speed 2.2mpmFig. 3-63 OSM Hook Shape in Cast Speed 2.5mpm& Frequency 50cpm and BreakOut StatusFig.3-64 Oscillation pattern for the low speed castingFig.3-65 Velocity profile and waveform for the low speed castingFig.3-66 Oscillation pattern for the high speed castingFig.3-67 Velocity profile and waveform for the high speed castingFig. 4-1 Technical issue in the strand of casterFig. 4-2 Measuring technology of crater endFig. 4-3 Optimizing technology for roll gap controlFig. 4-4 Conventional roll gap control typeFig. 4-5 Developed segment in the pilot casterFig. 4-6 Joint condition in the dynamic analysis of segmentFig. 4-7 Load condition in the dynamic analysis of segmentFig. 4-8 Lateral load condition acting on the hydraulic cylinderFig. 4-9 Lateral load acting on the Reduction Pivot WheelFig. 4-10 Casting process model by the single rollFig. 4-11 Soft reduction process model by the single rollFig. 4-12 Solidification region for analysisFig. 4-13 Boundary condition for the analysis by 5 rollFig. 4-14 Analysis mesh and stress profileFig. 4-15 (a) Strain profile, (b) Profile change of slab surfaceFig. 4-16 Mold heat flux according to the casting speedFig. 4-17 Mold heat flux at casting speed 1 mpmFig. 4-18 Mold heat flux at casting speed 3.5 mpmFig. 4-19 Mold heat flux at NF and WF by casting speed (950 x 140 mold)Fig. 4-20 Mold heat flux at NF and WF by casting speed (1100 x 100 mold)Fig.4-21 Return time to the same crater end after casting condition changeFig. 4-22 Crater end change by casting speed and cooling rateFig. 4-23 Crater end change when the casting speed is changed after cooling water changeFig. 4-24 Crater end change by heat transfer coefficient adjustingFig. 4-25 Slab surface temperature by the mold heat fluxFig. 4-26 Slab surface temperature measured by Pyrometer and TCFig. 4-27 Effect on to the crater end by the nozzle water rateFig. 4-28 Effect on to the crater end by nozzle excepting the roll coolingFig. 4-29 Crater end change by the casting condition changeFig. 5-1 The variation of casting speed determined at top driven motor of segment #1 when the casting speed is increased up to 0.97 m/minFig. 5-2 The variation of casting speed determined at a top driven motor of segment #1 when the casting speed is controlled by 0.97 m/minFig. 5-3 Variation of casting speed, stopper opening and mold level when the casting speed is 1.0 m/minFig. 5-4 Schematic diagram showing the opening pattern of stopper at the first operation stageFig. 5-5 Photo showing the shape of slab cross section cast at pilot casterFig. 5-6 Relationship between the reduction depth and the increased width of slab when liquid core reduction technology is appliedFig. 5-7 Photos showing the microstructure of slab cross section when liquid core reduction is applied to 40 mmFig.5-8 3 dimensional drawing showing a segment #0 of pilot casterFig.5-9 Pressure change determined by hydraulic cylinders at segment #0 of pilot caster during casting.Fig.5-10 Maximum and normal pressure change determined by hydraulic cylinders at segment #0 of pilot caster during castingFig. 5-11 Stress and strain curve for 0.096 % C 1.49% Mn 0.009 % S steel at strain rate=8 X 10-4 s-1, using a compression tester.Fig. 5-12 The variation of thickness and width determined at a pilot caster slabFig. 5-13 The microstructure of pilot caster slab at casting speed 2.2 m/minFig.5-14 Mapping results showing manganese and phosphorus concentration distribution of pilot caster slab at casting speed 2.2 m/minFig.5-15 Photos showing the difference of slab surface color according to the casting speed at pilot casterFig. 5-16 Schematic diagram showing the cooling mechanism of slabFig. 5-17 Surface temperature variation of slab cast at pilot caster according to the casting speedFig. 5-18 Width of slab on cast conditionFig. 5-19 Thickness of drive sideFig. 5-20 Thickness of non drive sideFig. 5-21 Width change of slab on condition(140t x 800w)Fig. 5-22 Thickness of drive side under LCR (2.5 mpm)Fig. 5-23 Thickness of non drive side under LCR (2.5 mpm)Fig. 5-24 Width change of slab on condition(100t x 1000w, 2.5~4.0mpm)Fig. 5-25 Thickness of drive side under LCR10(100t, 2.5~4 mpm)Fig. 5-26 Thickness of non drive side under LCR10(100t, 2.5~4mpm)
0