메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

박상욱 (영남대학교, 영남대학교 대학원)

지도교수
전찬욱
발행연도
2015
저작권
영남대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Recently, ternary and quaternary compound semiconductors of the type I?III?VI2 have received much attention because of their potential application in optoelectronic devices. The printing of nanocrystal inks is an attractive approach due to the ability to achieve high throughput for relatively low costs. Device efficiency above 13% was achieved with nanoparticle oxide precursors. However, the solution or paste type precursors consisted of nano-particles may leave a residual carbon layer after absorber formation process, which are attributed to the carbon-based dispersant or binder. Although the residual carbon layer might be harmful for the opto-electronic properties of the absorber and therefore its removal is desirable, its role in a solar cell has not been fully understood yet.
In this study, by investigating the selenization kinetics of Cu(In,Ga)S2 (CIGS) nanocrystal precursors printed on Mo coated sodalime glass substrate and selenized by using Se coated cover glass, it was found that the residual carbon layer thickness decreased with Se partial pressure and thinner carbon layer did not always translate into a higher efficiency solar cell.
The precursor films were prepared by printing a solution containing CuIn0.7Ga0.3S2 nanocrystals of about 20 nm in diameter four times to make 2㎛ thickness on 0.6 mm Mo coated sodalime glass substrate. The printing process was interrupted to dry the sample at 400 °C for 2 min in air. The nanocrystal precursor film had composition of Cu/(In+Ga)=1, Ga/(In+Ga)=0.3. The selenization was carried out at 570 °C for 15 min by pairing of the precursor glass covered with a Se-coated glass in a graphite box heated in a two-zone quartz furnace. The Se-coated glass was prepared by evaporating Se of 0.8~2.0 mm thickness onto a bare glass. Subsequently, CdS buffer layer was grown by chemical bath deposition (CBD) and window layer of un-doped ZnO (80 nm) and Al-doped ZnO (500 nm) was deposited to construct a solar cell.
Another study is The production process for large area and low cost CIGS thin film photovoltaic module is based on selenization of Cu(In,Ga) precursor film deposited by sputtering method.
Selenization method that is often used today, is using H2Se gas which is highly toxic and corrosive, furthermore, the material cost is very high. H2Se gas itself is responsible for more than 30% of total material cost to make a CIGS photovoltaic module.
we propose a new selenization system for using elemental Se vapour in a rapid thermal process (RTP) system to produce a CIGS absorber layer. The system was developed to enable uniform distribution of cracked Se over large area and includes a gas-permeable component which was not artificially machined but allows only Se-vapour to pass through and holds any condensed Se phases.
Unlike the stacked elemental layer RTP (SEL-RTP) developed by Avancis, there is no need to deposit Se layer on Cu(In,Ga) precursor by using an additional Se evaporator. In the new system, Se vapour is directly supplied from the gas-permeable component, which provides Se vapour with a long travelling path and generates active Se radicals.
CIGS films selenized by using the new system, were found to have sufficient Se content of more than 50% upto 60%. The solar cell of Ag/Ni/(Ga, Al)-ZnO/i-ZnO/CIGS/Mo/glass realized with the absorber showed best performance of 11.4% efficiency.

목차

1. 서 론
1.1 전 세계 환경 문제 및 태양전지의 필요성 1
1.2 태양광 발전 동향 5
1.3 박막 태양전지의 필요성 및 Cu(In,Ga)Se2 박막 태양전지9
2. 문헌 조사
2.1 태양전지 원리 및 이론 19
2.2 CuInSe2의 결정구조 21
2.3 CuInSe2의 전기적 성질 24
2.4 CuInSe2내의 내부결함(intrinsic defects) 29
2.5 Ordered Vacancy Compound(OVC) 36
2.6 CIGS 박막 태양전지의 구성 42
2.6.1 기판 42
2.6.2 배면 전극 42
2.6.3 버퍼층 43
2.6.4 window 층 44
2.6.5 반사방지막, 그리드 전극 45
2.7 DEVICE OPERATION 47
2.7.1 Short circuit current 47
2.7.2 Open circuit voltage 48
2.7.3 Fill factor 50
3. Cu(In,Ga)Se2(CIGS) 태양전지 제조방법
3.1 CIGS 흡수층 54
3.2 CdS 버퍼층 61
3.3 ZnO 투명전극층/ Ni, Ag grid 제조 64
4. CIGSe Nanoparticles precursor를 이용한 열처리 및 특성분석
4.1 서 론 69
4.2 실험 방법 70
4.3 실험 결과 및 고찰 74
4.3.1 Cover-Se 두께 및 셀렌화 시간에 따른 성능 평가
결과 74
4.3.2 CIGSe Nanoprecursor의 열처리 후 흡수층 분석 및 특성 평가 80
4.4 결 론 88
5. Se coated glass(SCG)법을 이용한 셀렌화
5.1 서 론 90
5.2 실험 방법 90
5.3 실험 결과 및 고찰 95
5.4 결 론 101
6. 새로운 열처리 방법인 Nozzle-Free Se-Shower법을 적용한 CIGS 태양전지 제조
6.1 서 론 102
6.2 실험 방법 106
6.3 실험 결과 및 고찰 108
6.3.1 Nozzle-free Se-shower를 이용한 전구체의 후열처리된 박막의 특성 분석 108
6.3.2 NFS-RTP의 공정 단계에 따른 CIGS 박막 반응
관찰 116
6.3.3 NFS-RTP를 이용한 KCN, KF 효과 비교 분석 121
6.3.4 저온-스프레이 전구체에 NFS-RTP법를 이용한 특성 분석 126
6.4 결 론 130
7. 결 론 132
참고문헌 135
Abstract 140

최근 본 자료

전체보기

댓글(0)

0