메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

곽창욱 (경북대학교, 경북대학교 대학원)

지도교수
박성배
발행연도
2015
저작권
경북대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Query expansion is a method that suggests to users the keywords related to a query to help search activity of users. Since a query can have diverse meanings, query expansion has tried to cover the meanings by extracting information from retrieved documents. The previous studies have used clustering algorithms to group similar documents from retrieved documents, and have extracted a representative word as a keyword from each cluster. However, their main drawback is that they fixed the number of clusters regardless of queries even if each query can have various number of meanings.
This paper proposes a graph-based method to consider the characteristics of a query to suggest keywords. The main difference between the previous studies and our method is whether the number of meanings inherent in the query is fixed or not. The proposed method adopts a community detection algorithm which finds similar structures within a graph. Therefore we deal with a variety of meanings inherent in the query instead of fixing their number.
In this paper we regard a unit of structures as a word because it is easy to expand the keywords that are represented as words. For this, we first make a word co-occurrence graph from retrieved documents of a query. Second, we build word communities from the word co-occurrence graph using the community detection algorithm. Then, the representative word of each community is selected as a keyword. As a result, the keywords extracted from each community are used to expand the query.
In order to evaluate the proposed method, we compared our results to those of three baselines. The baselines are Google search engine, keyword recommendation using TF-IDF and ISKR. The evaluation results indicate that the proposed method outperforms the baselines with respect to relevance and diversity. This implies that the keywords derived from community detection algorithm are useful to expand queries.

목차

목 차
Ⅰ. 서 론 1
Ⅱ. 관련 연구 5
Ⅲ. 커뮤니티 인식 알고리즘을 이용한 질의 확장 10
3.1. 단어 그래프 생성 11
3.2. 커뮤니티 인식 알고리즘 14
3.3. 커뮤니티 정제 17
3.4. 키워드 설정 18
Ⅳ. 실험 및 평가 20
4.1. 실험 설계 20
4.2. 실험 결과 및 분석 24
4.2.1. 개별 질의 점수 24
4.2.2. 종합 질의 점수 31
4.2.3. 통계적 검정 34
Ⅴ. 결론 및 향후 연구 37
참고 문헌 39
부록 43
영문초록 47

최근 본 자료

전체보기

댓글(0)

0