메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

문해민 (조선대학교, 朝鮮大學校)

지도교수
潘聲範
발행연도
2015
저작권
조선대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
The recent surveillance system is evolving into an intelligent system where it judges on its own and acts based upon image analysis technology. To satisfy the needs of high level intelligent surveillance system, it shall not only be able to extract objects and classify but also to identify precise information on the object.
The representative method to identify one’s identity in the field of surveillance is face recognition. Since recently face recognition has been applied to wide distance of applications including criminal investigation, searching for a missing child, and Human-Robot Interaction(HRI), the needs for long distance face recognition system has been dramatically increased. Since the conventional face recognition system is applied to short distance face recognition such as access control, the need for long distance face recognition has not been considered. In other words, if conventional face recognition system is to be applied to surveillance, it may be hard to expect satisfying quality on long distance face recognition with low image resolution by changes in camera resolution and distance.
Recently researches on long distance face recognition technology based on low resolution face information extracted from low resolution images or changes in distance haven been in progress. As representative methods of the foregoing, there are super resolution image reconstruction method, method using structural characteristics of images, face recognition using Pan Tilt Zoom(PTZ) camera. However, these conventional methods also have problems in which low recognition rate under changes in lighting and distance together with low processing speed for reconstruction of face images with low resolution, and dependability of learned data. In addition, the method using PTZ camera improves the rate of recognition, but does not solve fundamental issues in long distance face recognition such as additional costs. Thus, long distance face recognition technology, where it can be operable under environment with conventional low resolution and high resolution Closed Circuit TeleVision(CCTV), and possess strong real-time processing capability with changes in lighting and distance, is needed without additional costs.
This paper propose a method that face images by actual distances shall be used in the stage of registering user’s face images for the purpose of real-time long distance face recognition. In order to remedy low recognition rate incurred by changes in distance, we would like to propose learned data composition method using face images by distances. This method using face images by distances can be classified into the followings depending upon the manner to acquire face images, for instance, face images by actual distances, face images by virtual distances using zoom camera, and face images by virtual distances using automatic creation method. The proposed method in comparison with the conventional method, which only acquires short distance face information, has merits in acquiring precise characteristics of individual faces in both short and long distance.
The conventional method of long distance face recognition uses reconstruction method turning face images of long distance with low resolution into higher resolution whereas the proposed method is to make long distance face images with low resolution using short distance face images with high resolution through deterioration of image quality. In addition, the problems of nonconformity in face size and brightness of face by changes in distance can be solved by bilinear interpolation and histogram equalization respectively. The proposed method, that is learned data composition method using face images by distances, in this paper has 98.3% face recognition rate on average for entire distance in QVGA resolution achieving 58.7% higher than the conventional method using structural characteristics whereas 93.7% face recognition rate on average for entire distance in VGA resolution achieving 40.6% higher than the conventional method. Finally, the proposed method achieved 36.2% higher than the conventional method in SXGA resolution as well.

목차

표목차 ⅲ
도목차 ⅳ
ABSTRACT ⅵ
제1장 서 론 1
제1절 연구 배경 1
제2절 연구 목적 4
제3절 연구 내용 및 방법 6
제2장 영상 감시 시스템에서의 얼굴 인식 9
제1절 영상 감시 시스템 9
제2절 대표적 얼굴 인식 기술 13
1. 얼굴 밝기 정규화 14
2. 얼굴 크기 정규화 방법 18
3. 특징 추출 방법 23
제3절 기존 원거리 얼굴 인식 방법 26
1. 초해상도 복원 방법을 이용한 저해상도 얼굴 인식 26
2. 구조적 특징을 이용한 저해상도 얼굴 인식 28
3. PTZ 카메라를 이용한 원거리 얼굴 인식 30
4. 기존 원거리 얼굴 인식 방법 분석 33
제3장 제안하는 거리별 얼굴 영상을 이용한 원거리 얼굴 인식 35
제1절 기존 단일 거리 얼굴 영상을 이용한 얼굴 인식 37
1. 단일 영역기반 얼굴 영상 37
2. 다중 영역기반 얼굴 영상 40
제2절 제안하는 거리별 얼굴 영상을 이용한 얼굴 인식 42
1. 실제 거리별 얼굴 영상 42
2. 줌 카메라를 이용한 가상의 거리별 얼굴 영상 48
3. 자동 생성 방법을 이용한 가상의 거리별 얼굴 영상 50
제4장 실험 조건별 원거리 얼굴 인식 성능 분석 56
제1절 실험 방법 56
1. 얼굴 DB 56
2. 성능 평가방법 62
제2절 거리별 얼굴 인식률 분석 63
1. 거리별 얼굴 영상을 이용한 원거리 얼굴 인식 63
2. 저역 통과 필터를 이용한 근거리 얼굴 영상의 화질 열화 67
3. 양선형 보간법을 이용한 원거리 얼굴 크기 정규화 69
4. 히스토그램 평활화를 이용한 원거리 얼굴 밝기 정규화 72
제3절 기준 영상 크기에 따른 얼굴 인식률과 수행 시간 관계 74
제4절 제안하는 원거리 얼굴 인식 기술 분석 77
제5장 결 론 80
참고문헌 83

최근 본 자료

전체보기

댓글(0)

0