메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

손정열 (부산대학교, 부산대학교 대학원)

지도교수
하병현
발행연도
2014
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In the shipbuilding industry, block logistics operation is one of the critical managerial problems due to the generally limited storage capacity and transfer equipment.
We address the design of the effective block logistics operating system in a shipyard.
The block logistics operating in shipyard consist of a storage area selection plan, a storage area operation plan and a transfer equipment operation plan.
We propose a design of block logistics operating system based on the axiomatic design method.
As a result of the axiomatic design, the system functions are determined based on the implementation sequence. We validated the proposed design by implementing a block logistics operating system for a large-scale shipyard.

The storage area selection plan consists of selecting one of the distributed storage areas as available storage space and the block transfer distance from the selected storage area for subsequent processing according to the block production schedule.
We propose a mathematical programming and heuristic approach for determining the optimal storage area of each storage block.
The objective is to minimize the block transfer distance of storage blocks while the constraints for available storage space are satisfied. We present an integer programming model based on multi-commodity network flows.
We show the NP-hardness of the storage area selection problem.
We propose a linear programming model of polynomial time for the special cases of all blocks having an equal length and a heuristic algorithm to generate good quality solutions for larger instances in a very short computational time for application in the shipbuilding industry.

The storage area operation plan consists of selecting a period and location for the storage and retrieval of the block in the storage area by considering the number of relocations and storage and retrieval time constraints.
We propose a mathematical programming and heuristic approach for determining the optimal storage location of each block.
The objective is to minimize the number of relocations of blocks while the constraints for the storage and retrieval time windows are satisfied. We present an integer programming model based on multi-commodity network flows, and the three revised models based on the properties of the problem.
We also show the NP-hardness of the block storage planning problem.
We propose a heuristic algorithm to generate good quality solutions for larger instances in very short computational time for application to the shipbuilding industry.
We used numerical experiments to show that the revised models are more efficient than the generic model.

The approaches proposed in this study are expected to reduce the block transfer distance and the number of relocations. Moreover, they are expected to reduce the effort for maintenance, modification and extension of the block logistics operation system.
As a result, the approaches proposed in this study contribute to improving the efficiency of block logistics operation and to responding effectively to an expansion of production capacity in the shipbuilding industry.

목차

제 1 장 서 론 ....................................1
1.1 연구 배경 및 목적 ..............................1
1.2 연구의 대상 .................................3
1.3 관련 연구 ..................................7
1.4 연구 내용 및 범위 ..............................14
제 2 장 블록 물류 운영 시스템 설계 ........................17
2.1 블록 물류 운영 ...............................17
2.2 시스템 설계 .................................27
2.2.1 공리적 설계 방법론 ........................28
2.2.2 블록 물류 운영 시스템의 기능 정의 ................31
2.2.3 기능 요구의 설계 파라미터 정의 .................34
2.2.4 블록 물류 운영 시스템의 설계 분해 ................36
2.3 시스템 모델링 ...............................41
2.4 요약 및 토의 ................................43
제 3 장 적치장 선정 계획 ..............................46
3.1 문제정의 ..................................46
3.2 복잡도 ....................................51
3.2.1 NP-Hardness ............................51
3.2.2 반입되는 블록의 길이가 모두 같은 경우 .............52
3.3 수리 모형 ..................................54
3.3.1 네트워크 흐름 모형 ........................54
3.3.2 목적 함수 및 제약식 ........................57
3.4 발견적 기법 .................................60
3.5 수치 실험 ..................................61
3.5.1 실험 1................................62
3.5.2 실험 2................................63
3.6 통합 문제 ..................................68
3.7 요약 및 토의 ................................70
제 4 장 적치장 운영 계획 ..............................72
4.1 문제정의 ..................................72
4.2 복잡도 ....................................75
4.3 수리 모형 ..................................78
4.3.1 네트워크 흐름 모형 ........................78
4.3.2 목적 함수 및 제약식 ........................81
4.4 수리 모형 개선 ...............................84
4.4.1 모형 단순화 (P2)..........................84
4.4.2 제약식 대체 (P3)..........................86
4.4.3 선형 완화 (P4) ...........................87
4.5 발견적 기법 .................................88
4.5.1 초기해 생성 ............................89
4.5.2 이웃해 생성 ............................96
4.6 수치 실험 ..................................99
4.6.1 실험 1................................100
4.6.2 실험 2................................102
4.7 통합 문제 ..................................107
4.8 요약 및 토의 ................................111
제 5 장 결론 .....................................114
5.1 블록 물류 운영 시스템 구현 ........................114
5.2 요약 및 향후 연구 ..............................120
참고 문헌 .......................................124
APPENDICES ....................................130
Abstract ........................................143

최근 본 자료

전체보기

댓글(0)

0