메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

주대석 (부경대학교, 부경대학교 대학원)

지도교수
우경일
발행연도
2014
저작권
부경대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Portable equipment as well as propulsion of small airplanes (UAV) and robots have enhanced the need for portable power supplies of large energy density (kWh/kg). This has resulted in a growing interest in micro-gasturbines as they should be capable of delivering 20 times more energy than batteries for the same weight. The need for high performance and the specific problems are at the origin of a worldwide increase of research on micro-gasturbines and the motivation for the present paper.
In micro-gasturbines, high-speed and compact motors and generators are highly required. These electrical machines can be directly connected to high-speed gas turbines without mechanical gears. The machines have to operate at the same high-speed as turbines.
This paper study on new electrical machine capable of operating at the very high rotational speed and the related power control for micro-gasturbine. The permanent-magnet synchronous machine can be used as high-speed electrical generator. A 400,000 rpm, 800 W electrical generator is developed. First of all, rotor dynamics analysis was performed to design a new rotor for ultra high rotational speed. A two-pole rotor consists of a cylindrical samarium-cobalt permanent-magnet encased in an Inconel-817 sleeve. The permanent-magnet diameter of 6.4mm and the retaining sleeve thickness of 0.8mm are selected from a considered critical speed. In the next, a new material, amorphous alloy, was imposed on stator core due to minimize the iron losses. Three-phase six-slot stator has been selected to reduce the electric frequency. The diameter of the stator is 44mm with a length of 15mm. Numerical models were developed to analyze the performance of the machine. These numerical models were verified with experimental results.
The generator can be used as a startup motor because it is connected to the compressor and the turbine. So that the motor drive requires digital signal processor for the implementation of rotor position sensorless control strategy. This paper describes a sensorless controller that will operate at speeds up to 200,000 rpm for the startup motor.
The two ceramic ball bearings sustained the rotor for initial development. The back-to-back tests are performed. The ceramic ball bearing has been tested in electrical machine, and stably operated at 100,000rpm. The air foil bearing test will be continued until 400,000rpm is achieved.

목차

제 1 장 서 론 1
1.1 연구배경 및 필요성 1
1.2 연구내용 및 구성 6
제 2 장 영구자석 동기발전기 설계이론 8
2.1 초고속 회전속도 8
2.2 영구자석 동기기의 출력 12
2.3 유도 기전력 17
2.4 위험속도 18
제 3 장 초고속 영구자석 동기발전기 설계 23
3.1 발전기 설계 사양 24
3.2 회전자 설계시 고려사항 24
3.3 회전자 설계 28
3.4 고정자 설계시 고려사항 37
3.5 고정자 기본설계 40
3.6 극수-슬롯수 선정 43
3.7 설계결과 44
제 4 장 초고속 영구자석 동기발전기의 특성해석 47
4.1 자기회로 해석 48
4.2 유한 요소 해석 53
4.3 유도 기전력 해석결과 55
4.4 철손 해석결과 57
제 5 장 DSP 프로세서 기반 센서리스 제어기 구현 59
5.1 영구자석 동기기의 센서리스 제어 기법 60
5.2 전류 모델을 이용한 속도 및 위치 추정 65
5.3 센서리스 제어를 위한 주의사항 70
5.4 센서리스 제어기 설계도 72
제 6 장 시작품 제작 및 시험 80
6.1 시작품 제작 및 시험장치구성 80
6.2 위험속도해석 87
6.3 역기전력 측정 90
6.4 무부하 손실 93
6.5 AC 부하 특성 95
6.6 AC 부하 손실 97
6.7 시험결과 고찰 100
제 7 장 결 론 101
참고문헌 104
부록 113
부록 A. 아몰퍼스 합금의 재료특성 113
부록 B. 자기회로 모델 해석 소스파일 115
부록 C. 연구 경력 117

최근 본 자료

전체보기

댓글(0)

0