메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김용기 (충북대학교, 충북대학교 대학원)

지도교수
김미혜
발행연도
2014
저작권
충북대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The speech is one of the most classic communication for humans only and also one of the most efficient interaction between a man and machine. Since user interface using speech has clear advantages that it''s intuitive and applicable in the various interaction configurations, research and its applications on Automatic Speech Recognition(ASR) have prevailed widely and actively.
In an attempt to overcome the serious deterioration of recognition rates under noise environment, Audio Visual Speech Recognition(AVSR) has been recently introduced by integrating the information from lips shape into speech information. Such an effort has reportedly shown the improvement of performance to some extent compared to the case speech information is only considered.
This thesis is one of the preceding studies for the full AVSR system and proposes lip shape recognition based on a bool matrix simplifying the shape of lip and Support Vector Machine(SVM). For the reduction of redundant image information, lip region is segmented by comparing the locations of several candidates in the image of a portrait. Based on Active Shape Model, a certain number of points located on the outer edge of lip are then chosen and the outer edge of lip are simply represented by a bool matrix explaining the coordinates of the normalized and directly connected points by linear interpolation in the segmented lip region. Finally SVM trained with 5 speakers'' lip shapes with respect to 5 pronunciations is tested on 10 speakers'' data.
As a result, this thesis shows positive feasibility in speech recognition with only lip shapes and it implies that this approach can improve the speech recognition performance under noisy environment. Based on the result, AVSR is therefore expected to be one of the best alternative to the noisy speech recognition in the end.

목차

Ⅰ. 서 론 1
Ⅱ. 관련연구 4
2.1 입 모양 인식 관련연구 4
2.2 한국어 모음 입 모양 특징 8
2.3 입 모양 인식을 위한 SVM 10
Ⅲ. ASM을 이용한 입술경계 특징점 추출과 SVM기반의 입모양 인식 15
3.1 입술 영역 추출 16
3.2 ASM을 이용한 입술 경계 특징점들의 좌표값 추출 24
3.3 보간법을 이용한 부울 행렬 구성과 SVM을 이용한 입 모양 인식 30
Ⅳ. 실험 및 결과고찰 37
4.1 실험환경 및 실험 내용 37
4.2 결과 고찰 39
V. 결 론 45
참고문헌 47

최근 본 자료

전체보기

댓글(0)

0