메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이주석 (전북대학교, 전북대학교 일반대학원)

지도교수
유기호
발행연도
2013
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
As a long endurance unmanned aerial vehicle (UAV) platform, a solar powered airplane is a powerful candidate, and the airplane is expected to carry out the mission of artificial satellite partly as well as the continuous reconnaissance and surveillance. Under the limited conditions of solar radiation, solar cell efficiency and battery gravimetric energy density, sustainable flight of an UAV is a challenge issue.
In this paper an energy saving flight operation by adjusting flight altitude is proposed to prolong flight time of a solar powered UAV. The proposed method is based on the use of surplus energy from solar radiation to get higher altitude in the daytime and then the obtained altitude is used for descending flight without power consumption during the night. Also the method maximizes the energy saving by optimizing the flight profile, such as the flight altitude, the rate of climb and the time of free descending according to the unexpected solar radiation in real time under the real weather conditions. The proposed method reduces the use of battery energy in the night, so that, the method improves the feasibility of sustainable flight of UAV powered by solar energy only. The flight simulations and discussions are presented to validate the effectiveness of the proposed method.
In addition, the virtual flight system for evaluation of solar powered unmanned aerial vehicle (UAV) is designed and summarized. This system will provide the flight data for evaluating the possibility of continuous flight of a solar UAV. This system consists of the control and monitoring part, the power management part and the fuselage and the propulsion part. The mechanism part is designed for simulating the motion of the aircraft. This is equipped with the three stepper motors and motor drivers and controlled by the LabVIEW CRio. The power measurement circuit is designed in order to monitor the flow of the energy. By using the Zigbee module, the measured data can be monitored by the wireless communication. The power management part is comprised of the maximum power point tracking (MPPT), the solar modules and the charging controller. The fuselage and propulsion part consisted of the aircraft wing, fuselage and propulsion motor. The airfoil and wing are designed considering the aerodynamic characteristics. The required power for the flight is calculated and the data of flight path and attitude is generated to simulate the motion of the aircraft. The experiment of virtual flight is carried out under the real weather conditions and the monitoring of acquisition and consumption of solar energy is performed.

목차

목차 ⅰ
Abstract ⅲ
그림 목차 ⅵ
표 목차 ⅷ
제1장 서론 1
1.1 연구 배경 1
1.2 연구 목적 5
제2장 모델링 8
2.1 에너지 획득 모델 8
2.1.1 태양 에너지 8
2.1.2 항공기 자세에 따른 획득 에너지 11
2.2 수평/상승 비행 13
2.3 하강 비행 16
제3장 비행경로 최적화 18
3.1 연속비행 가능성 검토 18
3.2 비행고도 조절에 의한 에너지 절약 22
3.3 비행경로 최적화 27
3.3.1 고도 변화의 영향 27
3.3.2 최적 조건 30
3.3.3 최적화 33
3.3.4 결과 분석 및 고찰 38
제4장 가상 비행 평가 시스템 43
4.1 시스템 개요 43
4.2 제어 및 모니터링 44
4.2.1 기구부 44
4.2.2 모터 제어 46
4.2.3 계측 및 통신 46
4.3 전력 관리 48
4.4 기체 및 추진부 51
4.5 가상 비행 53
제5장 결론 57
참고 문헌 59

최근 본 자료

전체보기

댓글(0)

0