메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이영균 (부산대학교, 부산대학교 대학원)

지도교수
정해도
발행연도
2014
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수14

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
Chemical mechanical polishing (CMP) has become one of the most important technologies for producing nanoscale semiconductor devices because it meets the stringent requirements for ever increasing integrated intensities and yields. CMP process has been widely used to obtain the global planarization of inter-metal dielectric (IMD) layers, inter-layer dielectric layers (ILD) and pre-metal dielectric (PMD) layers. In general, chemical compositions and abrasives of the slurry play a very important role in the removal rate and within-wafer non-uniformity for global planarization ability of CMP process. The conventional slurry consists of abrasive particles of the solid state
suspended in a liquid state chemical solution. The abrasive in the slurry transfers
mechanical energy to the surface being polished and plays a key role in its material
removal. In the manufacturing process for ULSI chip, the abrasive of widely used slurry
is silica (SiO2) and alumina (Al2O3). Ceria (CeO2) has been more commonly used for
glass polishing, and recently for oxide films for shallow trench isolation (STI) structure.
Through chemical reaction and mechanical action, the abrasive-liquid interaction plays
an important role in determining the optimum abrasives type and size, their shape and
concentration. The slurry was designed for optimal performance which produced
reasonable removal rates, acceptable polishing selectivity with respect to underlying
layer, low surface defects after polishing, and good slurry stability. One of the most
critical problems is the higher cost of consumables (COC) such as pad, slurry, backing
film, and pad conditioner which accounts for over 70% of cost of ownership (COO).
Since a sufficient amount of slurry is required to get a higher removal rate (RR) and
lower within-wafer non-uniformity (WIWNU), there have recently been lots of studies
on the reduction of slurry consumption since the cost of the slurry is about 40% of COC.
Total slurry revenues will grow at a CAGR of 8.2% between 2008 and 2014. Factored
into the changing landscape between low cost ILD slurry, which is on the decline in
relation to high-priced metal and ceria-based STI slurry. Revenues generated will from
$874 million in 2008 to $1,402 million in 2014. Volume of slurry will grow at a CAGR
of 16.8%, from 1.4 million 55 gallon drums in 2008 to 3.6 million in 2014. In this paper, we have studied the CMP characteristics of mixed abrasive slurry (MAS) retreated by
adding of Ceria (CeO2) abrasives within 1:10 diluted silica slurry (DSS). We focused on
how these mixed ceria abrasives affect the material removal in order to determine the
optimal recipe conditions through the correlation between the mixed contents of ceria
abrasives and CMP performances in our self-developed. As a result, the oxide CMP
process using diluted mixed abrasive slurry has problems of higher material removal rate
at wafer center. But, we solved the questions in consecutive order by pH control and
slurry dispersion time. Finally, our proposed ceria-MAS can be useful to save a slurry
consumption of high cost since we used 1:10 diluted silica slurry. Although, under the
situation of present CMP technology, our self-developed slurry cannot apply in the chip
fabrication process of semiconductor industries, the saving of high-cost slurry is still
fascinated by R&D institute and experimental laboratory of university.

목차

List of Tables IV
List of Figures V
1장 서론 1
1.1 연구배경 1
1.2 반도체 산화막 CMP의 분류 6
1.2.1 산화막 CMP 6
1.2.2 ILD CMP 9
1.2.3 STI CMP 10
1.3 산화막 CMP 특성 13
1.4 산화막 CMP에 사용되는 슬러리 15
1.4.1 슬러리 15
1.4.2 퓸드 실리카 17
1.4.3 콜로이달 실리카 19
1.4.4 세리아 21
1.4.5 산화망간 23
1.4.6 지르코니아 24
1.5 슬러리 내에 함유되어 있는 화학성분 25
1.6 연구목적 28
2장 슬러리 희석과 혼합 33
2.1 경제적 슬러리 사용방안 33
2.1.1 재활용 슬러리 33
2.1.2 재순환 슬러리 37
2.1.3 슬러리 희석 41
2.2 슬러리 혼합 방법 43
2.2.1단일 입자 슬러리 44
2.2.2 혼합 입자 슬러리 46
2.2.3 혼합 입자 슬러리의 분산 48
2.3 새로운 혼합 연마 슬러리 제조 방법 제안 및 효과 50
3장 혼합 연마 슬러리의 CMP특성 61
3.1 실험장치의 구성 및 슬러리 구성 61
3.2 연마율과 연마균일도 측정원리 64
3.3 실리카 슬러리와 세리아 슬러리의 연마특성 72
3.4 첨가량에 따른 연마특성 77
3.5 혼합 연마 슬러리 첨가량의 pH 변화에 따른 연마 특성 82
3.5.1 실험조건 82
3.5.2 슬러리 pH10일 때의 연마특성 83
3.5.3 슬러리 pH8일 때의 연마특성 89
3.5.4 슬러리 pH6일 때의 연마특성 95
3.5.5 슬러리 pH5일 때의 연마특성 101
3.5.6 슬러리 pH4일 때의 연마특성 107
3.6 혼합 연마 슬러리 pH 변화에 따른 입도분포 113
3.7 요약 117
4장 혼합 연마 슬러리 분산시간에 따른 CMP 특성 122
4.1 혼합 연마 슬러리 분산시간에 따른 연마 특성 122
4.1.1 실험조건 122
4.1.2 30sec 분산하였을 때의 연마특성 124
4.1.3 60sec 분산하였을 때의 연마특성 130
4.1.4 90sec 분산하였을 때의 연마특성 136
4.1.5 120sec 분산하였을 때의 연마특성 142
4.2 혼합 연마 슬러리 분산시간에 따른 입도분포 149
4.3 요약 153
5장 결 론 156
References 160
Abstract 169

최근 본 자료

전체보기

댓글(0)

0