메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이세원 (부산대학교, 부산대학교 대학원)

지도교수
백광렬
발행연도
2014
저작권
부산대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
As car industry is growing, pedestrian traffic accident is increasing. To reduce the traffic accidents and the severity of the pedestrian
injuries, there have been many researches such as road infrastructure improvement, car structure improvement, and advanced driver
assistance system (ADAS) based on sensor network. There are many sensors to detect the pedestrian, for example, IR sensor, LADAR,
proximity sensor, temperature sensor, image sensor, and so on. Among them, the image sensor is the most intuitive and includes much more
information compare to the other sensors. Furthermore, because vehicles equipped with image recording device is generalized, it is
essential to study the pedestrian detection using an image sensor.
In this thesis, we propose a pedestrian detection algorithm using Gabor filter bank. In general, a Gabor filter is a linear filter used for
edge detection, because frequency and orientation representations of Gabor filters are similar to those of human visual system.
In order to extract the features of the pedestrian, we use various image processing algorithms and data structure algorithms. First, color
image segmentation is performed to consider the information of the RGB color space. Second, histogram equalization is performed to
enhance the brightness of the input images. Third, convolution is performed between a Gabor filter bank and the enhanced images.
Fourth, statistical values are calculated by using the integral image(summed area table) method. The calculated statistcal values
such as mean, variance, skewness are used for the feature matrix of the pedestrian area. To evaluate the proposed algorithm, the INRIA pedestrian database
and support vector machine(SVM) are used. The SVM classifies with the non-pedestrian or pedestrian using the extracted feature matrix.
We evaluate the proposed algorithm by using the INRIA test database and road images captured with a camera installed in a
vehicle. The experimental results show that the proposed algorithm is more accurate compare to the histogram of oriented gradient(HOG)
pedestrian detector which is called the methodology of pedestrian detection algorithm at present. Optimization of the proposed algorithm and ensuring the real-time
capability is our further works.

목차

1. 서론 1
2. 보행자 검출 알고리즘 4
2.1. 알고리즘 개요 4
2.2. 보행자 특징점 추출 6
2.2.1. 색공간 분할 7
2.2.2. 히스토그램 평활화 (histogram equalization) 8
2.2.3. Gabor filter 10
2.2.4. Gabor filter bank (GFB) 14
2.2.5. 영상의 분할 17
2.2.6. 통계적 수치 기반의 특징점 추출 19
2.2.7. 적분 영상 (integral image) 21
3. 학습 알고리즘 23
3.1. 서포트 벡터 머신 (support vector machine) 23
3.2. INRIA 보행자 데이터베이스 25
3.1.1. INRIA 학습 데이터베이스 25
3.1.2. INRIA 테스트 데이터베이스 25
4. 실험 및 결과 30
4.1. 실험 환경 30
4.2. 데이터베이스 기반 성능 검증 30
4.3. 도로 영상 기반 성능 검증 32
5. 결론 33
참고 문헌 34
Abstract 36

최근 본 자료

전체보기

댓글(0)

0