메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김상민 (공주대학교, 공주대학교 대학원)

지도교수
조정호
발행연도
2014
저작권
공주대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this study, commercial plant process simulation and HCNG mixing unit production and experiment were performed for HCNG commercialization through pilot plant scale-up. Process simulation were performed using the most common and efficient natural gas steam reforming. In addition, a method on how to supply HCNG was suggested through refueling experiment and production of mixing unit which was supplied with hydrogen and compressed natural gas. Supply of CNG for HCNG commercial plant uses the nationwide CNG infrastructure. Equipment for the production of hydrogen will be expanded to CNG infrastructure for the hydrogen supply. Equipment for the production of hydrogen was scaled-up to 300 Nm3/hr based on the pilot plant process simulation of 30 Nm3/hr hydrogen production. HCNG was satisfied with the emission acceptable standards of EURO-IV and its fuel characteristic is excellent because it is more eco-friendly than CNG. Soave-Redlich-Kwong equation of state was used as the thermodynamic model of process simulation. Langmuir-Hinshelwood and Power-Rate Law models were used as the reaction rate equation of the reactor. Mixing of HCNG was performed using ratio control. Amounts of the refueled HCNG was calculated after reading the pressure of refueling tank. The total energy efficiency for the respective pilot plant and commercial plant for production of hydrogen is 70%. Conversions of steam reformer and WGS reactor are 90% and 60%, respectively. The efficient operating conditions of this process are SCR=3 and GHSV=1500~3000 h-1. When operating intermediate pressure for hydrogen and natural gas are 63 and 55 bar, respectively, the required power in the case of multi-stage compression was lower than that of the single-stage compression and was reduced to about 25%.

목차

Ⅰ. 서론 1
1.1 연구 배경 1
1.2 수소혼합 천연가스(HCNG) 기술 4
1) HCNG연료 특성 4
2) 해외기술 현황 7
Ⅱ. 이론 9
2.1 상태방정식 9
1) Van der Waals 상태방정식 9
2) Redlich-Kwong 상태방정식 10
3) Soave-Redlich-Kwong 상태방정식 11
4) Alpha function 12
2.2 화학반응식 14
2.3 반응속도식 17
1) Power Rate Law model 17
2) Langmuir-Hinshelwood model 22
2.4 혼합 및 충전 계산 방식 24
1) 비율제어(Ratio control) 24
2) 압력이용 충전 계산 방식(Pressure method) 26
Ⅲ. HCNG 제조 공정모사 28
3.1 HCNG 파일럿 플랜트 공정모사 31
1) 수증기 개질기 모사 34
2) 수성가스 전환반응기 모사 38
3) PSA의 모사 42
4) Burner의 모사 45
5) 고압압축을 위한 다단압축 48
3.2 운전조건 결정 53
1) SCR에 의한 영향 55
2) GHSV에 의한 영향 58
3.3 대용량 수소 생산설비 공정모사 61
1) 반응연료 공급유량 결정 62
2) 수증기 개질기와 수성가스 전환반응기 모사 64
3) 에너지 효율 및 수소생산 결과 69
Ⅳ. HCNG 혼합장치 제작 및 실험 71
4.1 HCNG 혼합장치 71
4.2 HCNG 혼합장치 실험 74
1) Full충전 및 정량충전 실험 74
2) 실험결과 76
V. 결론 및 요약 80
참고문헌 82
ABSTRACT 83

최근 본 자료

전체보기

댓글(0)

0