메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

임태수 (충남대학교, 忠南大學校 大學院)

지도교수
朴商皓
발행연도
2013
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수2

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Automobile (Ship) the electronic engine control system are consists of the various sensors that operating state of the engine into electrical signals sent to the computer to change and ECU that Signal analysis, determine the fuel injector valve opening or the time to determine the amount.
However, these sensors using the information in order to control the introduction of electronic control systems, strong fault diagnosis technique fault conditions of should be developed for can have a significant impact on performance.
Fault diagnosis determines the malfunction in a system and classifies the failures. The conventional fault diagnosis method can be classified as a model based method and non-model based method.
In this paper is proposed, the relationship between the sensor signal and the engine output by calculating the correlation between the selection of the sensor and the high of this sensor model based on the sensor signal fault diagnosis algorithm.
Among the model-based fault diagnosis methods the parameter estimation method has been used to estimate the parameters. Based on the estimated parameters an algorithm has been proposed to diagnose the fault.
In addition, based on the estimated parameters the residuals were generated. The waveform analyzes of residuals were performed in real time and created a data. The data collected was then compared with the database for fault diagnostics.
The residuals waveforms were classified based on type to determine the failure. These waveforms were used in the hidden Markov model algorithms.
In addition, For order to verify the algorithm finally saw simulate using real data collected real sensor and developed fault diagnostic program using C & Android

목차

Ⅰ. 서론 1
1.1 연구 필요성 1
1.2 연구 동향 2
1.2 연구 방법 3
Ⅱ. 고장 진단 이론 6
2.1 고장 진단 배경 6
2.2 고장 진단 종류 7
Ⅲ. Raw Data 가공 9
3.1 Raw Data 9
3.2 Raw Data Filtering 10
3.3 상관 관계 13
Ⅳ. 고장 진단 19
4.1 Modified Kalman Filter 19
4.2 계수 추정 및 잔차 생성 21
4.3 Hidden Markov Model 28
4.4 HMM을 이용한 잔차 파형 분류 31
Ⅴ. 안드로이드 어플리케이션 개발 35
Ⅵ. 결론 40

최근 본 자료

전체보기

댓글(0)

0