지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
이용수12
CONTENTSENCLATURES xvii요 약 문 iABSTRACT iiiCONTENTS vLIST OF TABLES viiLIST OF FIGURES viii1. 서론 132. MR 유체 162.1 지능 재료 162.2 MR 유체 182.3 MR 유체의 특성 233. 초정밀 스테이지 324. 복합 모드형 MR 댐퍼 434.1 UPS-RMS 1 MR 댐퍼 484.2 UPS-RMS 2 MR 댐퍼 584.3 UPS-RMS 3 MR 댐퍼 664.4 UPS-S3Lab 1 MR 댐퍼 784.5 UPS-S3Lab 2 MR 댐퍼 835. 전단 모드형 MR 댐퍼 1065.1 MR 댐퍼의 설계 1065.2 MR 댐퍼의 성능 평가 1226. 초정밀 스테이지의 진동 제어 1367. 결론 155참고문헌 156LIST OF TABLESTable 2.1 Classification of the smart materials and their response [13] 17Table 2.2 Characteristics of the MRF-132DG [33] 25Table 3.1 BBN Vibration criteria [35] 35Table 4.1 System parameters [39] 69Table 5.1 Optimization of the magnetic field 108Table 6.1 Vibration control results of ultra-precision stage (time) 140Table 6.2 Vibration control results of ultra-precision stage (frequency) 141LIST OF FIGURESFigure 2.1 Phenomenological behavior of the MR fluid [31] 20Figure 2.2 Photograph of the MR fluid behavior 21Figure 2.3 Modes of the MR fluid [31] 22Figure 2.4 Characteristics of the MRF-132DG [33] 26Figure 2.5 Photograph of the MR viscometer 27Figure 2.6 Shear rate vs. shear stress of the MR fluids (■: RMS MR Fluid, ▲: MRF-132DG, ●: MRF-126CD) 29Figure 2.7 Yield stress of the MR fluids 31Figure 3.1 Configurations of the ultra-precision stage [34] 36Figure 3.2 Classification of the ultra-precision stage [34] 37Figure 3.3 Vibration sources of the ultra-precision stage 38Figure 3.4 BBN vibration criteria [35] 39Figure 3.5 Configuration of the integrated isolation mount [15] 40Figure 3.6 Configuration of the mount system 41Figure 3.7 Configuration of the horizontal MR damper system 42Figure 4.1 Configuration of the conventional MR damper [15] 46Figure 4.2 Configuration of the proposed mixed mode MR damper 47Figure 4.3 Design of the MR damper (UPS-RMS 1) [37] 51Figure 4.4 Damping force characteristics -simulation (UPS-RMS 1) [37] 52Figure 4.5 Photograph of the MR damper (UPS-RMS 1) [37] 53Figure 4.6 Experimental configuration for damping force measurement of the MR damper (UPS-RMS 1) [37] 54Figure 4.7 Damping force characteristics -experiment (UPS-RMS 1) [37] 55Figure 4.8 Mechanical model of the stage with MR damper (UPS-RMS 1) 56Figure 4.9 Control performance under impulse input -simulation (UPS-RMS 1) 57Figure 4.10 Photograph of the MR damper (UPS-RMS 2) [38] 60Figure 4.11 Damping force characteristics -experiment (UPS-RMS 2) [38] 61Figure 4.12 Mechanical model of the stage with MR damper (UPS-RMS 2) [38] 62Figure 4.13 Control performance of the MR damper (Csky=25) (UPS-RMS 2) [38] 63Figure 4.14 Control performance of the MR damper (Csky=50) (UPS-RMS 2) [38] 64Figure 4.15 Control performance of the MR damper (Csky=75) (UPS-RMS 2) [38] 65Figure 4.16 Photograph of the MR damper (UPS-RMS 3) [39] 70Figure 4.17 Damping force characteristics -simulation (UPS-RMS 3) [39] 71Figure 4.18 Experimental configuration for damping force measurement of the MR damper (UPS-RMS 3) [39] 72Figure 4.19 Damping force characteristics -experiment (UPS-RMS 3) [39] 73Figure 4.20 Control performances of the skyhook controller (UPS-RMS 3) [39] 74Figure 4.21 Control performance of the sliding mode controller -signum function (UPS-RMS 3) [39] 75Figure 4.22 Control performances of the sliding mode controller -saturation function (UPS-RMS 3) [39] 76Figure 4.23 Control performance comparison (UPS-RMS 3) 77Figure 4.24 Configuration of the air-mixed type MR damper 79Figure 4.25 Design of the MR damper (UPS-S3Lab 1) 80Figure 4.26 Components of the MR damper (UPS-S3Lab 1) 81Figure 4.27 Photograph of the MR damper (UPS-S3Lab 1) 82Figure 4.28 Design of the MR damper (UPS-S3Lab 2) 89Figure 4.29 Magnetic field analysis of the MR damper (UPS-S3Lab 2) 90Figure 4.30 Rendering image of the MR damper (UPS-S3Lab 2) 91Figure 4.31 Components of the MR damper (UPS-S3Lab 2) 92Figure 4.32 Photograph of the MR damper (UPS-S3Lab 2) 93Figure 4.33 Experimental configuration of the MR damper (UPS-S3Lab 2) 94Figure 4.34 Damping force characteristics (UPS-S3Lab 2) 95Figure 4.35 Time response for rising (UPS-S3Lab 2) 96Figure 4.36 Time response for falling (UPS-S3Lab 2) 97Figure 4.37 Hysteretic behavior (UPS-S3Lab 2) 98Figure 4.38 Nonlinear hysteretic biviscous model 99Figure 4.39 Asymmetric biviscous model 100Figure 4.40 Damping force model prediction (UPS-S3Lab 2) 101Figure 4.41 Flow chart of the asymmetric biviscous compensator 102Figure 4.42 Damping force control -sinusoidal (UPS-S3Lab 2) 103Figure 4.43 Damping force control -decreasing sinusoidal (UPS-S3Lab 2) 104Figure 4.44 Design of the MR damper (UPS-S3Lab 3) 105Figure 5.1 Configuration of the shear mode MR damper 115Figure 5.2 Optimization parameters of the MR damper (UPS-S3Lab 4) 116Figure 5.3 Magnetic field analysis of the MR damper (UPS-S3Lab 4) 117Figure 5.4 Design of the MR damper (UPS-S3Lab 4) 118Figure 5.5 3D-model of the MR damper (UPS-S3Lab 4) 119Figure 5.6 Components of the MR damper (UPS-S3Lab 4) 120Figure 5.7 Photograph of the manufactured MR damper (UPS-S3Lab 4) 121Figure 5.8 Experimental configuration of the MR damper (UPS-S3Lab 4) 125Figure 5.9 Current dependent damping force (UPS-S3Lab 4) 126Figure 5.10 Damping force characteristics: 3Hz (UPS-S3Lab 4) 127Figure 5.11 Damping force characteristics: 5Hz (UPS-S3Lab 4) 128Figure 5.12 Damping force characteristics: 10Hz (UPS-S3Lab 4) 129Figure 5.13 Ideal configuration of the MR damper (UPS-S3Lab 4) 130Figure 5.14 Field dependent hysteretic behavior (UPS-S3Lab 4) 131Figure 5.15 Configuration of the MR mount system 1 132Figure 5.16 Mechanical model of the MR mount system 1 133Figure 5.17 Configuration of the MR mount system 2 134Figure 5.18 Mechanical model of the MR mount system 2 135Figure 6.1 3ton ultra-precision stage 142Figure 6.2 1.5ton ultra-precision stage 143Figure 6.3 Configuration of the integrated isolation mount 144Figure 6.4 Control block-diagram of the integrated isolation mount [45] 145Figure 6.5 Control system of the ultra-precision stage 146Figure 6.6 Vibration control result of the ultra-precision stage ?pneumatic, uncontrolled (time) 147Figure 6.7 Vibration control result of the ultra-precision stage ?pneumatic+EM, uncontrolled (time) 148Figure 6.8 Vibration control result of the ultra-precision stage ?pneumatic+EM+MR, uncontrolled (time) 149Figure 6.9 Vibration control result of the ultra-precision stage (time) 150Figure 6.10 Vibration control result of the ultra-precision stage ?pneumatic, uncontrolled (frequency) 151Figure 6.11 Vibration control result of the ultra-precision stage ?pneumatic+EM, uncontrolled (frequency) 152Figure 6.12 Vibration control result of the ultra-precision stage ?pneumatic+EM+MR, uncontrolled (frequency) 153Figure 6.13 Vibration control result of the ultra-precision stage (frequency) 154
0