메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

우형석 (고려대학교, 高麗大學校 大學院)

지도교수
金容贊
발행연도
2013
저작권
고려대학교 논문은 저작권에 의해 보호받습니다.

이용수1

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
An electric vehicle is an environment-friendly automobile which emits no tailpipe pollutant. The conventional vehicle adopting an internal combustion engine inside the vehicle is heated up by using waste heat generated from the engine. However, for the electric vehicle, an alternative solution for the heating is required with the absence of engine. Recently, a heat pump system, which is widely used for residential heating due to higher efficiency, has been studied for its adoption in the electric vehicle as a heating system. In this study, a heat pump system utilizing air source and waste heat source from electric devices was investigated experimentally. The performance of the heat pump system was investigated varying the outdoor temperature and recovery heat amount. The experimental results show that there exists an optimal combination of dual sources in the design of flow distribution at dual heat sources.
The most important component for utilizing waste heat source is the plate heat exchanger. A plate heat exchanger is a type of heat exchanger that uses metal plates to transfer heat between two fluids. This has a major advantage over a conventional heat exchanger in that the fluids are exposed to a much larger surface area because the fluids spread out over the plates. In this study, the evaporation heat transfer characteristics of a brazed plate heat exchanger was investigated experimentally using antifreeze coolant (ethylene-glycol water) and R134a as the two fluids in a heat exchanger. The effects of refrigerant mass flux were measured by changing coolant temperature, mass flow rate, and composition. R134a evaporation heat transfer coefficient of the heat exchanger was calculated using the logarithmic mean temperature difference (LMTD) and Wilson plot method. Experimental results showed that the average vaporization heat transfer coefficient increased as the refrigerant mass flux increase. The experimental heat transfer coefficients were also compared with the pre-studied correlations for evaporation heat transfer coefficients.

목차

Contents
Abstract..............................................................................................ⅰ
List of Figures....................................................................................ⅴ
List of Tables.................................................................................... ⅶ
Nomenclature................................................................................... ⅷ
제 1 장 서론.......................................................................................1
1.1 연구배경………………………………………………………………1
1.2 연구동향……………………………………………………………3
1.3 연구목적 및 내용……………………………………………………5
제 2장 실험장치 및 실험방법.......................................................7
2.1 실험장치……………………………………………………………7
2.2 각종 계측장비………………………………………………23
2.3 실험조건……………………………………………………………30
2.4 실험방법……………………………………………………………34
2.5 성능계산 및 불확실도 분석……………………………………39
제 3장 폐열회수용 판형열교환기의 증발열전달 특성………41
3.1 부동액 농도, 온도 및 유량 변화 실험…………………………41
3.2 기존 상관식과의 비교 ………………………………………44
제 4장 열원별 자동차용 히트펌프의 성능 특성……………47
4.1. 냉매측 및 공기측 열량 평형을 이용한 검증…………………47
4.2. 최적 냉매 충전량 실험…………………………………………49
4.3 외기열원 단독운전 특성………………………………………51
4.4 폐열회수 단독운전 특성…………………………………………53
4.5 이중열원 운전 특성………………………………………………55
제 5장 결론.......................................................................................62

최근 본 자료

전체보기

댓글(0)

0