메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김석중 (가톨릭대학교, 가톨릭대학교 대학원)

지도교수
황병연
발행연도
2013
저작권
가톨릭대학교 논문은 저작권에 의해 보호받습니다.

이용수3

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 소셜 네트워크 서비스의 영향력이 증대되면서 이에 대한 효과적인 분석법에 대한 관심이 높아지고 있다. 그중에서도 정치, 특히 선거 분석은 소셜 네트워크 기반 연구들 중 가장 활발하고 분석 요구가 높은 분야로 기존의 종이나 전화 여론조사를 대체할 충분한 잠재력을 가지고 있다. 그러나 한편으로는 아직까지 낮은 분석 정확도와 부족한 연구 성과들로 최근까지도 분석에 어려움을 겪고 있는 분야이기도 하다. 이에 본 논문에서는 항구성을 띄는 인간의 정치적 성향에 착안하여 이를 분석 설계에 적용할 경우 정확도 향상에 기여할 수 있음을 가정하고 실험을 통해 증명하였다.
본 논문에서는 정치적 성향을 개별 트윗에 의존하여 분석하는 기존의 방법들 대신 전체 타임라인을 통해 사용자 별로 분석하는 방법을 제안한다. 이를 위해 2012년 4월 11일 제19대 국회의원선거 기간 동안 발생한 트윗을 이용하여 트윗 코퍼스를 구성하였다. 실험에 앞서, 트윗 코퍼스에서 선거 도메인을 대표하는 검색 키워드들과 긍정 및 부정을 의미하는 극성 키워드들을 추출하고 레이블을 구성한다. 다음으로 각 계정의 타임라인에 존재하는 모든 트윗에 레이블을 적용하여 극성을 분류하고 사용자의 정치 성향을 도출한다. 마지막으로 분석 성능을 살펴보기 위해 개별 트윗 분석과 타임라인 분석의 정확도와 재현율을 도출하고 사용자 타임라인 분석의 정확도 향상을 확인한다.
실험 결과, 보수와 진보 성향으로 분류된 계정은 각각 295개, 293개였고 양쪽 성향이 동등하게 나타나 상쇄된 계정은 1,026개였으며, 실제 선거 결과와 비교했을 때 상당히 유사함을 확인할 수 있었다. 성능평가는 개별 트윗 분석과 계정별 성향 분석으로 나누어 평가하였는데, 개별 트윗 분석의 경우 75.4%의 정확도와 34.8%의 재현율을 보였다. 반면 계정별 성향 분석의 경우 85.7%의 정확도를 보여 약 10%의 성능 향상을 보였다. 다음으로 사용자의 성향과 일치하는 트윗 비율을 알아본 결과, 계정의 성향과 같은 극성을 따르는 트윗은 80.9%, 반대의 극성을 따르는 트윗은 19.1%였다. 이를 통해 트위터에서도 항구성을 띄는 인간의 정치적 성향이 그대로 반영된다는 사실을 증명할 수 있었으며 개별 트윗 수집을 통한 코퍼스 분석보다 사용자 계정 단위의 분석이 정치적 성향 분석의 정확성을 향상시킬 수 있음을 확인하였다.

목차

감사의 글 ······················································································ iv
초록 ································································································ x
1. 서론 ···························································································· 1
2. 관련연구 ···················································································· 6
2.1 정치 성향 연구 ··································································· 6
2.2 선거 예측 연구 ··································································· 6
2.3 자연어 처리 기법 ······························································· 7
3. 데이터 수집 및 구성 ································································ 9
3.1 트윗 수집 및 구성 전략 수립 ··········································· 9
3.2 검색 키워드 정의 및 갱신 ·············································· 13
3.3 검색 키워드의 레이블 구성 ············································ 16
3.4 극성 키워드 정의 ····························································· 17
3.5 극성 키워드의 레이블 구성 ············································ 21
4. 성향 분석 ················································································ 22
4.1 사용자 타임라인 취득 ····················································· 22
4.2 트윗의 극성 분석 ····························································· 23
4.2.1 검색 키워드 적용 및 후보 키워드 선정 ················ 24
4.2.2 극성 키워드 적용 및 극성 분류 ······························ 24
4.3 계정별 성향 분석 ····························································· 26
5. 성능 평가 ················································································ 28
5.1 개별 트윗 분석 평가 ························································ 28
5.2 계정별 트윗 분석 평가 ···················································· 30
6. 결론 ·························································································· 32
참고문헌 ······················································································ 34
영문논문제출서 ·········································································· 36
영문인준서 ·················································································· 37
ABSTRACT ················································································· 38

최근 본 자료

전체보기

댓글(0)

0