메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Minsoo Park (Chonnam National University) Seolbin Jang (Chonnam National University) Woongkyu Park (Korea Photonics Technology Institute) Joongwook Lee (Chonnam National University)
저널정보
한국광학회 Current Optics and Photonics Current Optics and Photonics Vol.9 No.2
발행연도
2025.4
수록면
157 - 164 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Metamaterials have attracted considerable attention, owing to their unique properties and application prospects across various fields. However, the efficient design of metamaterials remains challenging because of the complex, high-dimensional optimization problems involved. Addressing these complexities via conventional design methodologies is difficult, and leads to extended development times and suboptimal solutions. To overcome these limitations, we propose a hybrid strategy that integrates genetic algorithms with reinforcement learning to achieve autonomous design of metamaterials. This integrated approach exploits the strengths of both techniques and significantly improves the efficiency and effectiveness of the design process. Our method converges to optimal configurations within five generations—a 79% reduction compared to the 24 generations required by conventional genetic-algorithm methods. Moreover, the performance scores for the hybrid and conventional methods are 0.93 and 0.85, respectively, within the same limited iteration span. Thus the hybrid method achieves a performance improvement of approximately 9.4% over the conventional method within just five generations. These results suggest that the proposed approach facilitates the discovery of innovative metamaterial structures and represents a significant advance in the automation and optimization of metamaterial design.

목차

Ⅰ. INTRODUCTION
Ⅱ. METHODS
Ⅲ. RESULTS & DISCUSSION
Ⅳ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0