메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Minseon Park (Gangneung-Wonju National University) Min-Woo Kwon (Seoul National University of Science and Technology)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.25 No.2
발행연도
2025.4
수록면
109 - 116 (8page)
DOI
10.5573/JSTS.2025.25.2.109

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Biological neurons play a crucial role in preventing excessive activation of the human brain and enabling efficient information processing by balancing excitatory and inhibitory functions. Neuromorphic chips and hardware based Spiking neural networks (SNNs) aim to replicate these biological neural systems in hardware. For instance, in artificial neural networks, biological neurons are represented by neuron circuits. Conventional analog neuron circuits utilize CMOS technology. However, existing CMOS-based analog neuron circuits show significant issues related to power consumption and area. Additionally, they fail to effectively integrate both excitatory and inhibitory functions. Therefore, in this study, we propose a neuron circuit that integrates both Neuronal excitatory and inhibitory functions using feedback field-effect transistor (FBFET). We fabricated the FBFET using TCAD Athena Simulation and designed the neuron circuit using SPICE mixed-mode simulations. By utilizing the threshold voltage adjustment characteristics of the FBFET’s control gate, we successfully inhibited neuron firing. Ultimately, we succeeded in integrating both excitatory and inhibitory signals using a single FBFET device. This work represents a significant advancement toward realizing bio-inspired neuromorphic computing systems.

목차

Abstract
I. INTRODUCTION
II. FBFET SIMULATION RESULTS
III. WINNER TAKES ALL
IV. INTEGRATION NEURONAL FUNCTIONS USING FBFET
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0