메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Min uk Jung (Kookmin University) Soo Yeon Yoon (Kookmin University)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제50권 제4호
발행연도
2025.4
수록면
637 - 646 (10page)
DOI
10.7840/kics.2025.50.4.637

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
South Korea, being in a tense situation with the North and surrounded by the sea on three sides due to its geographic characteristics, places great importance on coastal surveillance for national security. However, challenges arise in coastal surveillance operations due to outdated military equipment and a reduction in military personnel caused by low birth rates. Against this backdrop, this paper presents deep learning based automation technology as a substitute for human resources. Coastal regions often experience low visibility due to sea fog caused by unique climate conditions. To address this issue, the Dehazy algorithm is introduced for fog removal, and an algorithm for background separation is implemented by dividing the boundary between the sea, sky, and obstacles based on the horizon to focus on objects on the sea. For object detection, the YOLO algorithm is used, and this paper highlights the difference in object recognition rates and real time processing speed when identifying unidentified objects, both in the original and processed images.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. References
Ⅲ. Research Methodology
Ⅳ. Experiment
Ⅴ. Conclusion and Future Research
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0