메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mikhail D. Khrisanfov (Lomonosov Moscow State University) Dmitriy D. Matyushin (Russian Academy of Sciences) Andrey S. Samokhin (Lomonosov Moscow State University) Aleksey K. Buryak (Russian Academy of Sciences)
저널정보
한국질량분석학회 Mass Spectrometry Letters Mass Spectrometry Letters Vol.15 No.4
발행연도
2024.12
수록면
178 - 185 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Obtaining information about the molecular structure from the mass spectra is one of the most pursued challenges in non-targeted analysis. The complete solution to the problem has not been found yet, therefore only partial information about the structure can be obtained from mass spectra, often in the form of various molecular fingerprints. One of the latest approaches for prediction of molecular fingerprints from electron ionization mass spectra is DeepEI, which suggested a suboptimal procedure based on using a separate neural network for each molecular fingerprint (more than 100 models in our work and 636 using the DeepEI method). More than that, after repeating the procedure described in the original article, we assumed that at least some of their models were most likely overfitted. We streamlined the original approach by predicting multiple types of molecular fingerprints with a single multi-output neural network. We developed a lightweight and performant architecture (called Lite model for brevity) with improved accuracy (0.91 vs 0.89), precision (0.86 vs 0.77), and recall (0.71 vs 0.70) compared to the DeepEI approach. Additionally, the Lite version of the model was more than 100 times faster than the DeepEI approach in training and inference.

목차

Abstract
Introduction
Experimental
Results and Discussion
Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0