메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Po-Han Shih (Ministry of Health and Welfare) Tsung-Hsien Lin (Ministry of Health and Welfare) Shih-Ting Zeng (Ministry of Health and Welfare) Shu-Yu Fan (Ministry of Health and Welfare) Chi-Zong Zang (Ministry of Health and Welfare) Ya-Chun Ko (Ministry of Health and Welfare) Ya-Hui Hsu (Ministry of Health and Welfare) Shou-Chieh Huang (Ministry of Health and Welfare) Mei-Chih Lin (Ministry of Health and Welfare) Su-Hsiang Tseng (Ministry of Health and Welfare)
저널정보
한국질량분석학회 Mass Spectrometry Letters Mass Spectrometry Letters Vol.15 No.2
발행연도
2024.6
수록면
79 - 94 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Over the past few decades, new psychoactive substances (NPS) have become prevailing. With the widespread emergence of NPS, phenethylamines (PEAs) have become one of the groups abused most which PEAs, along with other stimulants, make up the majority of stimulants. When determining the NPS, the methods for screening and confirmation are crucial which assesses the reliability of testimony. In this study, a set of GC/MS methods employing two derivatizing agents for determining 76 target PEAs in urine was established and further applied for authentic sample analysis. Five PEAs (N,N-DMA, PMMA, 4-CA, amphetamine, and methamphetamine) with contents over their LLOQs were detected in thirteen of the twenty tested samples. In order to compare the result from the GC/MS methods with the previously established LC-MS/MS method, Cohen's kappa coefficient and McNemar's test were applied for statistical analysis. Perfect agreement between GC/MS and LC-MS/MS techniques for determining target PEAs is demonstrated by the Kappa coefficient for each of the five detected targets.

목차

Abstract
Introduction
Materials and methods
Experimental
Results and discussion
Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0