메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jongseo Mo (Yeungnam University)
저널정보
대한수의학회 Korean Journal of Veterinary Research(대한수의학회지) Korean Journal of Veterinary Research(구 대한수의학회지) 제65권 제1호
발행연도
2025.3
수록면
8 - 18 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The rapid detection and differentiation of major respiratory viruses, such as avian influenza virus, infectious bronchitis virus, Newcastle disease virus, infectious laryngotracheitis virus, and avian metapneumoviruses within an infected poultry flock, are crucial for timely control measures. Effective disease management mandates identifying the etiologic agent and differentiating between similar pathogens in the early stages of infection. The traditional methods of virus detection include virus isolation, virus neutralization, and hemagglutination inhibition assays. Molecular-based methods, such as quantitative real-time polymerase chain reaction (PCR), have also become a standard. Future diagnostic concepts focus on advances in point-of-care testing that can be applied directly on-site in poultry plants, such as biosensing and lateral flow tests, which are becoming prominent in avian diagnostics. Portable PCR assays, such as loop-mediated isothermal amplification, are also becoming popular. In addition, artificial intelligence, particularly those using deep-learning techniques, is increasingly being integrated into early disease detection. This comprehensive review examines the history of diagnostic methodologies that have supported these efforts for decades and discusses future concepts and trends in the field.

목차

Abstract
Introduction
Conventional Methods for Detection of Respiratory Viral Diseases in Poultry
Molecular-Based Detection Methods for Respiratory Viral Diseases in Poultry
Future Diagnostic Strategies
Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0