메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Young Eun Jeon (Gyeongkuk National University) Yongku Kim (Kyungpook National University) Jung-In Seo (Gyeongkuk National University)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제32권 제2호
발행연도
2025.3
수록면
197 - 213 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study introduces a novel pivotal-based approach, specifically designed for an adaptive progressive Type-Ⅱ censoring framework. As an illustrative example of the proposed methodology, we focus on an adaptive progressive Type-Ⅱ censored sample from an extreme value distribution with location and scale parameters, which is useful for modeling the occurrence probabilities of extreme events such as natural disasters and financial crises. The proposed methodology not only offers very simple estimation equations for the two parameters but also constructs an exact confidence interval for the scale parameter, by utilizing pivotal quantities. Furthermore, it enables the construction of a generalized confidence interval for the location parameter, which may meet nominal levels even when the sample size is not sufficiently large. To facilitate this, an algorithm employing a pseudorandom sequence is proposed, which is attractive due to its outstanding scalability. This scalability is demonstrated through the construction of a generalized interval for an adaptive progressive Type-Ⅱ censored sample. Finally, the superiority and practical applicability of the proposed methodology are validated through a comparison with a likelihood-based method in Monte Carlo simulations and real data analysis.

목차

Abstract
1. Introduction
2. Model description
3. Classical estimation
4. Pivotal-based estimation
5. Application
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0