메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Solomon A. Owiredu (Jeju National University) Kwang-Il Kim (Jeju National University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2023 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.14 No.1
발행연도
2023.1
수록면
237 - 242 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Applications of mobility data in marine research has provided deeper insights into vessel activity and their impacts on the marine environment. The use of tracking devices to monitor spatial and temporal dynamics of fishing vessels has become critical in marine fisheries research in recent times. Declines in global fishery productivity has been attributed to vessel overcapacity resulting in excessive overfishing and management measures that have yet to address these impacts in a changing environment. Investigating the linkages between spatial and temporal distribution of fisheries resources and vessel activity is necessary in estimating the extent of fishing impact on marine ecosystems. In our study, using a data fusion approach, we combined AIS and fish catch datasets of commercial fishing vessels that operate in the waters around Jeju Island. We proposed a method of allocating catch amounts to fishing segments of trajectories by reconstructing trajectories into fishing and non-fishing activities using vessel speed profiles. We produced spatio-temporal distributions of catch, vessel activity and reliance on fishing grounds and discussed opportunities of combining larger datasets collected over longer periods to provide estimates and reference points that can inform sustainable resource management decisions on a local and regional scale.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. SYSTEM MODEL AND METHODS
Ⅲ. RESULTS
Ⅳ. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0