메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Tagne Poupi Theodore Armand (Inje University) Ali Hussain (Inje University) Ikromjanov Kobiljon Komil Ugli (Inje University) Hee-Cheol Kim (Inje University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2023 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.14 No.1
발행연도
2023.1
수록면
225 - 230 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Diabetic retinopathy (DR) is a complication of diabetes that attacks the back of the eye known as the retina. DR can lead to blindness if lately diagnosed or left untreated. However, the patient's condition can be handled and thus he can be prevented from blindness through early detection of the disease. DR takes several years before it reaches a stage where it can affect a patient's sight. For this reason, the disease diagnosis takes a long time. This research aims to propose a deep-learning model using transfer learning MobileNet for the early detection of DR using retinal images. For this purpose, the APTOS blindness dataset, which comprises 3000+ fundus images, was used as containing fundus images with five class: No DR, Mild DR, Severe DR, and Proliferative DR. To develop our proposed model, the images have been properly preprocessing by using adaptive thresholding, removing foreground image, and applying data augmentation process afterward we applied MobileNet to train the model which showed an accuracy of 81.42%. This model will serve as a solution for the classification of DR exacerbation levels and consequently helps for an early diagnosis of the disease condition to avoid further complications.

목차

ABSTRACT
Ⅰ. INTRODUCTION
Ⅱ. DATA COLLECTION
Ⅱ. DEEP LEARNING MODEL
Ⅳ. RESULTS
CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0